2017 Vol. 36, No. 5
Article Contents

TAN Haoyuan, HE Zhonghua, CHEN Fei, DU Yuedan, REN Zihui. Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications[J]. Geological Bulletin of China, 2017, 36(5): 893-908.
Citation: TAN Haoyuan, HE Zhonghua, CHEN Fei, DU Yuedan, REN Zihui. Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications[J]. Geological Bulletin of China, 2017, 36(5): 893-908.

Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications

  • The volcanic rocks in Baiyingaolao Formation are located in Suolun area of Horqin Right Wing Front Banner within central Da Hinggan Mountains.Lithologically, the Baiyingaolao Formation is composed mainly of rhyolites and rhyolitic tuffs.Three groups of zircon samples yielded U-Pb ages of 127±2Ma, 133±2Ma and 123±1Ma respectively.The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks in the Baiyingaolao Formation of the study area were formed during the Early Cretaceous period with ag-es of 133~123Ma.Petrological and geochemical characteristics of these volcanic rocks suggest that they are all highly fractionated rocks similar to I-type granite rocks, and their parental magmas were likely derived from the partial melting of lower crustal materials with pla-gioclase and a little hornblende as the residual phases.In addition, the volcanic rocks sampled in this paper, tectonically located in the Xing'an terrain, have high initial 176Hf/177Hf ratios (0.282854~0.283026) and positive εHf(t) values (+5.5~+11.5).These data, combined with young Hf two-stage model ages of 828~439Ma, suggest that the crustal growth of the Xing'an terrain occurred during Neopro-terozoic and Phanerozoic periods.The above results, combined with previous studies of the contemporaneous magma-tectonic activi-ties in Northeast China, imply that the generation of the Early Cretaceous volcanic rocks in the central Da Hinggan Mountains was relat-ed to the extensional environment caused by the subduction of the Paleo-Pacific plate beneath the Eurasian continent.

  • 加载中
  • [1] 蒋国源, 权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所文集, 1988, 3:23-100.

    Google Scholar

    [2] 赵国龙, 杨桂林, 王忠, 等.中南部中生代火山岩[M].北京:北京科学技术出版社, 1989.

    Google Scholar

    [3] 林强, 葛文春, 孙德有, 等.东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139.

    Google Scholar

    [4] 葛文春, 林强, 孙德有, 等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 1999, 15(3):396-406.

    Google Scholar

    [5] 张吉衡. 大兴安岭地区中生代火山岩的年代学格架[D]. 吉林大学硕士学位论文, 2006.

    Google Scholar

    [6] 张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学博士学位论文, 2009.

    Google Scholar

    [7] 内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社, 1991:1-725.

    Google Scholar

    [8] Wang F, Zhou X H, Zhang L C, et al.Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia[J].Earth and Planetary Science Let-ters, 2006, 251(1):179-198.

    Google Scholar

    [9] Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J]. Lithos, 2008, 102(1):138-157.

    Google Scholar

    [10] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Im-plications for subduction-induced delamination[J]. Chemical Geolo-gy, 2010, 276(3):144-165.

    Google Scholar

    [11] Wu F Y, Walker R J, Ren X, et al.Osmium Isotopic Constraints on the Age of Lithospheric Mantle Beneath Northeastern China[J]. Chemical Geology, 2003, 196(1):107-129.

    Google Scholar

    [12] Wu F Y, Lin J Q, Wilde S A, et al.Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China[J].Earth and Planetary Science Letters, 2005, 233(1):103-119.

    Google Scholar

    [13] Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozo-ic Granitoids in Northeastern China[J]. Journal of Asian Earth Sci-ences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [14] Koschek G.Origin and significance of the SEM cathodolumines-cence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111/jmi.1993.171.issue-3

    CrossRef Google Scholar

    [15] Belousova E, Griffin W L, O'Reilly S Y, et al.Igneous Zircon:Trace Element Composition as An Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [16] Anderson T.Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb[J].Chemical Geology, 2003, 192:59-79.

    Google Scholar

    [17] Yang J H, Wu F Y, Wilde S A, et al.Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton:Geochronological, geochemical and Nd-Hf isotopic evi-dence[J]. Precambrian Research, 2008, 167:125-149. doi: 10.1016/j.precamres.2008.07.004

    CrossRef Google Scholar

    [18] Blichert-Toft J, Albarède F.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-crust System[J].Earth and Planetary Science Letters, 1997, 148(1):243-258.

    Google Scholar

    [19] Veevers J J, Saeed A, Belousova E A, et al.U-Pb Ages and Source Composition by Hf-isotope and Trace-element Analysis of Detri-tal Zircons in Permian Sandstone and Modern Sand from South-western Australia and A Review of the Paleogeographical and De-nudational History of the Yilgarn Craton[J]. Earth-Science Re-views, 2005, 68(3):245-279.

    Google Scholar

    [20] Boynton W V, Cosmochemisty of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114.

    Google Scholar

    [21] Sun S S, McDongough W F. Chemical and isotopic systematics of oce-anic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Ocean Basins. Geological Society of Special Publication, London, 1989, 42:313-345.

    Google Scholar

    [22] Kinny P D, Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zir-con[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):327-341. doi: 10.2113/0530327

    CrossRef Google Scholar

    [23] 许文良, 葛文春, 裴福萍, 等.东北地区中生代火山作用的年代学格架及构造意义[J].矿物岩石地球化通报, 2008, 27(增刊):286-287.

    Google Scholar

    [24] 内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996:1-344.

    Google Scholar

    [25] 葛文春, 李献华, 林强, 等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学, 2001, 36(2):176-183.

    Google Scholar

    [26] 苟军, 孙德有, 赵忠华, 等.满洲里南部白音高老组流纹岩锆石UPb定年及岩石成因[J].岩石学报, 2010, 26(1):333-344.

    Google Scholar

    [27] 王建国, 和钟铧, 许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报, 2013, 29(3):853-863.

    Google Scholar

    [28] Dong Y, Ge W C, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Forma-tion in the central Great Xing' an Range, NE China, and its tecton-ic implications[J].Lithos, 2014, 205:168-184. doi: 10.1016/j.lithos.2014.07.004

    CrossRef Google Scholar

    [29] Kong Y M, Ma R, He Z H, et al.Characteristics and tectonic setting of volcanic rocks in Early Cretaceous Baiyingaolao Formation of Keyouzhongqi area, Inner Mongolia[J].Global Geology, 2014, 17(2):78-85.

    Google Scholar

    [30] 赵书跃, 韩彦东, 朱春燕, 等.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义[J].地质力学学报, 2004, 10(3):276-287.

    Google Scholar

    [31] 林强, 葛文春, 孙德有, 等.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学学报, 2000, 30(4):322-328.

    Google Scholar

    [32] 林强, 葛文春, 曹林, 等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3):208-222.

    Google Scholar

    [33] 葛文春, 林强, 李献华, 等.大兴安岭北部伊列克得组玄武岩的地球化学特征[J].矿物岩石, 2000, 28(3):14-18.

    Google Scholar

    [34] 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学-中国地质大学学报, 2000, 25(2):172-178.

    Google Scholar

    [35] 张连昌, 陈志广, 周新华, 等.大兴安岭根河地区早白垩世火山岩深部源区与构造岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约[J].岩石学报, 2007, 23(11):2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013

    CrossRef Google Scholar

    [36] 郭锋, 范蔚茗, 王岳军, 等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报, 2001, 17(1):161-168.

    Google Scholar

    [37] McDonough W F, Sun S S.The Composition of the Earth[J]. Chemical geology, 1995, 120(3):223-253.

    Google Scholar

    [38] Taylor S R, McLennan S M.The Continental Crust:Its Composi-tion and Evolution[M].Blackwell:Oxford Preess, 1985:1-312.

    Google Scholar

    [39] Pearce J A.Role of the Sub-continental Lithosphere in Magma Genesis at Active Continental Margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths, Nantwich, Cheshire:Shiva Publications, 1983:230-249.

    Google Scholar

    [40] Tischendorf G, Paelchen W.Zur Klassifikation von Granitoiden[J]. Classification of Granitoids Zeitschrift Fuer Geologische Wissen-schaften, 1985, 13(5):615-627.

    Google Scholar

    [41] Wilson M.Igneous Petrogenesis[M].London:Unwin Hywin Press, 1989:295-323.

    Google Scholar

    [42] Bea F, Fershtater G, Corretgé L G.The Geochemistry of Phospho-rus in Granite Rocks and the Effect of Aluminium[J].Lithos, 1992, 29(1):43-56.

    Google Scholar

    [43] Wu F, Jahn B, Wilde S, et al.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China[J].Tectonophysics, 2000, 328(1):89-113.

    Google Scholar

    [44] Wu F, Sun D, Li H, et al.A-type Granites in Northeastern China:Age and Geochemical Constraints on their Petrogenesis[J].Chemi-cal Geology, 2002, 187(1):143-173.

    Google Scholar

    [45] Wu F, Jahn B, Wilde S A, et al.Highly Fractionated I-type Granites in NE China (I):Geochronology and Petrogenesis[J].Lithos, 2003, 66(3):241-273.

    Google Scholar

    [46] Jahn B, Wu F, Chen B.Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic[J].Episodes, 2000, 23(2):82-92.

    Google Scholar

    [47] Jahn B M, Wu F Y, Capdevila R, et al.Highly Evolved Juvenile Granites with Tetrad REE Patterns:the Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China[J].Lithos, 2001, 59(4):171-198. doi: 10.1016/S0024-4937(01)00066-4

    CrossRef Google Scholar

    [48] Jahn B, Capdevila R, Liu D, et al.Sources of Phanerozoic Granit-oids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geo-chemical and Nd Isotopic Evidence, and Implications for Phanero-zoic Crustal Growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):629-653. doi: 10.1016/S1367-9120(03)00125-1

    CrossRef Google Scholar

    [49] 吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220.

    Google Scholar

    [50] 隋振民. 大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D]. 吉林大学博士学位论文, 2007.

    Google Scholar

    [51] 隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, 23(2):461-480.

    Google Scholar

    [52] 周漪, 葛文春, 王清海.大兴安岭中部乌兰浩特地区中生代花岗岩的成因——地球化学及Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011, 30(5):901-923.

    Google Scholar

    [53] Lightfoot P C, Hawkesworth C J, Sethna S F.Petrogenesis of Rhyo-lites and Trachytes from the Deccan Trap:Sr, Nd and Pb Isotope and Trace Element Evidence[J].Contributions to Mineralogy and Petrology, 1987, 95(1):44-54. doi: 10.1007/BF00518029

    CrossRef Google Scholar

    [54] Green T H.Experimental Studies of Trace-element Partitioning Applicable to Igneous Petrogenesis-Sedona 16 years later[J].Chem-ical Geology, 1994, 117(1):1-36.

    Google Scholar

    [55] 张旗, 李承东.花岗岩:地球动力学意义[M].北京:海洋出版社, 2012:1-276.

    Google Scholar

    [56] Shao J A, Zang S X, Mou B L, et al.Extensional tectonics and asthe-nospheric upwelling in the orogenic belt:a case study from Hing-gan-Mongolia Orogenic belt[J].Chinese Science Bulletin, 1994, 39:533-537.

    Google Scholar

    [57] 邵济安, 张履桥, 牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学(D辑), 1998, 28(3):193-200.

    Google Scholar

    [58] 邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, 6(4):339-346.

    Google Scholar

    [59] 邵济安, 李献华, 张履桥, 等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约[J].地球化学, 2001, 30(6):517-524.

    Google Scholar

    [60] 邵济安, 刘福田, 陈辉, 等.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 2001, 75(1):56-63.

    Google Scholar

    [61] 邵济安, 张履桥, 贾文, 等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J].岩石学报, 2001, 17(2):283-290.

    Google Scholar

    [62] Fan W M, Guo F, Wang Y J, et al.Late Mesozoic Calc-alkaline Vol-canism of Post-orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China[J].Journal of Volcanology and Geo-thermal Research, 2003, 121(1):115-135.

    Google Scholar

    [63] 高晓峰, 郭锋, 范蔚茗, 等.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报, 2005, 21(3):737-748.

    Google Scholar

    [64] 孟恩, 许文良, 杨德彬, 等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报, 2011, 27(4):1209-1226.

    Google Scholar

    [65] 秦亚, 梁一鸿, 邢济麟, 等.内蒙古正镶白旗地区早白垩世A型花岗岩锆石LA-ICP-MS测年、地球化学特征及其地质意义[J].吉林大学学报(地球科学版), 2012, S3:154-165.

    Google Scholar

    [66] 施璐, 郑常青, 姚文贵, 等.大兴安岭中段五岔沟地区蛤蟆沟林场A型花岗岩年代学、岩石地球化学及构造背景研究[J].地质学报, 2013, 87(9):1264-1276.

    Google Scholar

    [67] 张履桥, 邵济安, 郑广瑞.内蒙古甘珠尔庙变质核杂岩[J].地质科学, 1998, 33(2):14-20.

    Google Scholar

    [68] 张玉涛, 张连昌, 英基丰, 等.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2733-2742. doi: 10.3969/j.issn.1000-0569.2006.11.011

    CrossRef Google Scholar

    [69] 王涛.花岗岩研究与大陆动力学[J].地学前缘, 2000, (7):137-146.

    Google Scholar

    [70] 刘宝山, 任凤和, 李仰春, 等.伊春地区晚印支期Ⅰ型花岗岩带特征及其构造背景[J].地质与勘探, 2007, 43(1):74-78.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(328) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint