2017 Vol. 36, No. 5
Article Contents

CHENG Shunbo, WU Zhihua, LIU Zhongpeng, LIU Asui, MA Liyan, LU Youyue. Sulfur and lead isotope geochemistry of the Liushutang lead-zinc deposit in Hu'nan Province and its significance[J]. Geological Bulletin of China, 2017, 36(5): 846-856.
Citation: CHENG Shunbo, WU Zhihua, LIU Zhongpeng, LIU Asui, MA Liyan, LU Youyue. Sulfur and lead isotope geochemistry of the Liushutang lead-zinc deposit in Hu'nan Province and its significance[J]. Geological Bulletin of China, 2017, 36(5): 846-856.

Sulfur and lead isotope geochemistry of the Liushutang lead-zinc deposit in Hu'nan Province and its significance

More Information
  • The discovery of the Liushutang lead-zinc deposit is one of the major breakthroughs of prospecting in the Nanling metal-logenic belt in recent years.The lead-zinc lodes are strictly controlled by the shattered fracture zones along the western margin of Hengyang basin.Field observation shows that the related mineralization can be divided into three stages of quartz-pyrite, quartzsphalerite-galena and barite.In this paper, systematic research on S, Pb isotopes based on different stages of ores were conducted to explain the origin of ore-forming materials and ore genesis.The result shows that sulfur isotopes of 17 sulfide samples vary in a wide range (δ34S value being-12.8‰~4.6‰) with a dynamic evolution of gradual increasing of δ34S values from early to late.This can be probably explained by a mixing process of organic sulfur (~-13‰) and magmatic sulfur (~5‰).Sulfur of latest barite ore (δ34S is 14.7‰~24.4‰) might have been provided by the strata sulfate.206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb ratios of 13 sulfide ore samples vary in the range of 18.627~18.942, 15.670~15.804 and 38.366~38.912, with the average value being 18.747, 15.705 and 38.614, respec-tively.These values are very similar to values of Pb isotopes of magmatic feldspar in southern Hu'nan and also have weak linear rela-tion with Pb isotopes of regional Cambrian strata, suggesting that ore materials might have mainly originated from magmatic pluton in the depth, and subordinately from the Cambrian strata.Based on the above results and geological evidence, the authors put forward a model of magma-related hydrothermal mineralization with multiple sources of ore-forming materials, which may be suitable for explaining the ore genesis of the Liushutang deposit.

  • 加载中
  • [1] 金荣龙.湖南南部主要铅锌矿床硫铅同位素、矿物包裹体特点及在找矿评价中的应用[J].地质与勘探, 1986, 22(12):29-35.

    Google Scholar

    [2] 龙汉春.铜山岭多金属矿床的成因特点和矿质来源[J].大地构造与成矿学, 1983, 7(3):198-208.

    Google Scholar

    [3] 童潜明, 伍仁和, 彭季来.郴桂地区钨锡铅锌金银矿床成矿规律[M].北京:地质出版, 1995, 1-98.

    Google Scholar

    [4] 王岳军, 范蔚茗, 郭锋, 等.湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J].中国科学(D辑), 2001, 31(9):745-751.

    Google Scholar

    [5] 王岳军, 范蔚茗, 郭峰, 等.湘南中生代花岗闪长质小岩体的岩石地球化学特征[J].岩石学报, 2001, 17(1):169-175.

    Google Scholar

    [6] 姚军明. 湘南两类花岗岩及其成矿作用研究——以宝山和黄沙坪为例[D]. 南京大学博学位士论文, 2006: 1-103.

    Google Scholar

    [7] 郭春丽, 许以明, 楼法生, 等.钦杭带侏罗纪与铜和锡矿有关的两类花岗岩对比及动力学背景探讨[J].岩石矿物学杂志, 2013, 32(4):463-484.

    Google Scholar

    [8] 路睿. 湖南省常宁市水口山铅锌矿床地质特征及成因机制探讨[D]. 南京大学硕士学位论文, 2013: 1-59.

    Google Scholar

    [9] 谢银财. 湘南宝山铅锌多金属矿区花岗闪长斑岩成因及成矿物质来源研究[D]. 南京大学硕士学位论文, 2013: 1-59.

    Google Scholar

    [10] 周荣文, 龙国中.祁东留书塘铅锌矿地质特征及资源远景预测[J].湖南地质, 2001, 20(2):111-113.

    Google Scholar

    [11] 蔡新华, 陈民苏, 张厚宏, 等.留书塘铅锌矿矿床特征及资源量预测[J].地质与勘探, 2005, 41(5):5-9.

    Google Scholar

    [12] 谭海明.湖南留书塘多金属矿地质特征及找矿远景分析[J].矿业快报, 2006, 443(5):53-54.

    Google Scholar

    [13] 吴志华, 魏绍六.留书塘铅锌矿床成矿特征与找矿方向.华南地质与矿产, 2009, 4:17-21. doi: 10.3969/j.issn.1007-3701.2009.04.003

    CrossRef Google Scholar

    [14] Seal R R. Sulfur isotope geochemistry of sulfide Minerals(Ⅱ)[J]. Reviews in Mineralogy and Geochemistry, 2006, 61:633-677. doi: 10.2138/rmg.2006.61.12

    CrossRef Google Scholar

    [15] Mortensen J K, Hall B V, Bissig T. Age and paleotectonic setting of volcanogenic massive Sulfide deposits in the Guerrero Terrane of central Mexico:Constraints from U-Pb age and Pb isotope studies[J]. Economic Geology, 2008, 103:117-140. doi: 10.2113/gsecongeo.103.1.117

    CrossRef Google Scholar

    [16] Basuki N I, Taylor B E, Spooner E T C. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Val-ley-Type zinc-lead mineralization, Bongara area, northern Peru[J]. Economic Geology, 2008, 103:783-799. doi: 10.2113/gsecongeo.103.4.783

    CrossRef Google Scholar

    [17] 王东升, 刘俊来, Tran M D, 等.越南东北部佐田铅锌矿床硫化物S、Pb同位素特征及其地质意义[J].地球化学, 2015, 34(4):757-768.

    Google Scholar

    [18] 刘训, 付德荣.湖南衡阳盆地沉积相及构造发展的若干问题[J].中国地质科学院院报, 1986, 13:13-36.

    Google Scholar

    [19] 李福顺.钦杭成矿带衡阳盆地找矿方向及前景分析[J].华南地质与矿产, 2012, 4:360-368. doi: 10.3969/j.issn.1007-3701.2012.04.010

    CrossRef Google Scholar

    [20] 龙国中, 王积廉.衡阳盆地盐类矿床地质特征与矿床成因[J].湖南地质, 1994, 13(1):22-24.

    Google Scholar

    [21] Ohmoto H. Systematics of sulfur and carbon isotopes in hydrother-mal ore deposits[J]. Economic Geology, 1972, 67:551-578. doi: 10.2113/gsecongeo.67.5.551

    CrossRef Google Scholar

    [22] 伍光英. 湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用[D]. 中国地质大学(北京)博士学位论文, 2005: 132-133.

    Google Scholar

    [23] 梁华英.龙山金锑矿床成矿物质来源研究[J].矿床地质, 1989, 8(4):39-48.

    Google Scholar

    [24] 刘海臣, 朱炳泉.湘西板溪群及冷家溪群的时代研究[J].科学通报, 1994, 39(2):148-150.

    Google Scholar

    [25] Zartman R E, Doe B R. Plumbotectonics the model[J]. Tectono-physics, 1981, 75:135-162. doi: 10.1016/0040-1951(81)90213-4

    CrossRef Google Scholar

    [26] Ohmoto H. Stable isotope geochemistry of ore deposits[J]. Re-views in Mineralogy and Geochemistry, 1986, 16:491-559.

    Google Scholar

    [27] 赵焕升. 湖南桂阳宝山硫化铅锌矿床地球化学特征及伴生金、银地球化学演化规律[D]. 中南工业大学博士学位论文, 1990: 1-96.

    Google Scholar

    [28] 刘悟辉, 徐文炘, 戴塔根, 等.湖南柿竹园钨锡多金属矿田野鸡尾矿床同位素地球化学研究[J].岩石学报, 2006, 22(10):2517-2524. doi: 10.3969/j.issn.1000-0569.2006.10.012

    CrossRef Google Scholar

    [29] 周涛, 刘悟辉, 李蘅, 等.湖南香花岭锡多金属矿床同位素地球化学研究[J].地球学报, 2008, 29(6):703-708.

    Google Scholar

    [30] Strauss H. The isotopic composition of sedimentary sulfur through time[J]. Palaeogeogr. Palaeoclim. Paleoecol., 1997, 132:97-118. doi: 10.1016/S0031-0182(97)00067-9

    CrossRef Google Scholar

    [31] Kampschulte A, Strauss H. The sulfur isotopic evolution of Pha-nerozoic seawater based on the analysis of structurally substituted sulfate in carbonates[J]. Chemical Geology, 2004, (3/4):255-286.

    Google Scholar

    [32] Paytan A, Kastner M, Campbell D, et al. Seawater sulfur isotope fluctuations in the cretaceous[J]. Science, 2004, 304:1663-1665. doi: 10.1126/science.1095258

    CrossRef Google Scholar

    [33] Panneerselvam K, Wacfarlane A W, Salters V J M. Provenance of ore metals in base and precious metal deposits of central Idaho as in-ferred from lead isotopes[J]. Economic Geology, 2006, 101:1063-1077. doi: 10.2113/gsecongeo.101.5.1063

    CrossRef Google Scholar

    [34] 祝新友, 王莉娟, 朱谷昌.锡铁山SEDEX铅锌矿床成矿物质来源研究——铅同位素地球化学证据[J].中国地质, 2010, 37(6):1682-1689.

    Google Scholar

    [35] 张乾, 潘家永, 邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学, 2000, 29(3):31-238.

    Google Scholar

    [36] 戴自希, 盛继福, 白冶, 等.世界铅锌资源的分布与潜力[M].北京:地震出版社, 2005:9.

    Google Scholar

    [37] 林孝先, 侯中健.试论中国铅锌矿矿床类型划分[J].桂林理工大学学报, 2014, 34(1):8-14.

    Google Scholar

    湖南省地质调查院. 湖南衡阳盆地铅锌多金属矿评价成果报告. 2005.

    Google Scholar

    湖南地质矿产开发局417队. 湖南省祁东县留书塘矿区大岭矿段铅锌矿详查报告. 2014.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(2175) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint