2018 Vol. 37, No. 2-3
Article Contents

ZHANG Jin, QU Junfeng, ZHANG Qinglong, LI Jinyi, ZHENG Rongguo, ZHANG Beihang, ZHAO Heng, XIE Guoai, LIU Jianfeng, HE Zhenyu. The structural mapping in exposed bedrock areas: methods, practice and exploration[J]. Geological Bulletin of China, 2018, 37(2-3): 192-221.
Citation: ZHANG Jin, QU Junfeng, ZHANG Qinglong, LI Jinyi, ZHENG Rongguo, ZHANG Beihang, ZHAO Heng, XIE Guoai, LIU Jianfeng, HE Zhenyu. The structural mapping in exposed bedrock areas: methods, practice and exploration[J]. Geological Bulletin of China, 2018, 37(2-3): 192-221.

The structural mapping in exposed bedrock areas: methods, practice and exploration

  • Structural mapping is not only an important part of basic geological mapping but also the source and foundation of structural geology. The major objectives of structural geology mapping lie in finding out the spatial distribution, geometric characteristics and the kinematic properties of the geological units. Furthermore, the structural framework and the evolution can be established in mapping areas so that researchers can have a better understanding of structures'relationships with magma activities, metamorphic events, and mineralization. The primary task of structure field mapping is to define mappable units and measure various structural elements in outcrops. The details of mapping depends on the mapping scale:the larger the scale, the more the mappable structural elements. Attention should be paid to the observation and description of medium-small structures. Mappable elements need to be measured and depicted in detail. There are three methods used in the field mapping, namely crosscutting, tracking and checking. In general, the tracking method plays a more important role as the mapping scale becomes larger. Depending upon the actual conditions, these methods can be flexibly selected or modified. Various kinds of satellite images are useful throughout the field mapping.

  • 加载中
  • [1] 高秉璋, 洪大卫, 郑基俭, 等.花岗岩类区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.

    Google Scholar

    [2] 房立民, 杨振升, 李勤, 等.变质岩区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.

    Google Scholar

    [3] 熊家镛, 卢重明, 徐怀艾, 等.沉积岩区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.

    Google Scholar

    [4] 熊家镛, 张志斌, 蔡麟荪.陆内造山带1:50000区域地质填图方法研究——以哀牢山造山带为例[M].武汉:中国地质大学出版社, 1998.

    Google Scholar

    [5] McClay K. The Mapping of Geological Structures[M]. John Wiley & Sons, 2nd edition, 2004.

    Google Scholar

    [6] Davis G H, Reynolds S J, Kluth C F. Structural geology of rocks and regions (Third edition)[M]. John Wiley & Sons, 2012.

    Google Scholar

    [7] Turner F J, Weiss L E. Structural analysis of metamorphic tectonites[M]. Me. Graw-Htll Book Comp., 1963.

    Google Scholar

    [8] Sander B. Gefugekunde der Gesteine[M]. Vienna. Julius Springer, 1930.

    Google Scholar

    [9] Backlund H. Petrogenetische Studien an Taimyrgesteinen[J]. GFF, 1918, 40(2):101-203.

    Google Scholar

    [10] Holmes A. The Nomenclature Of Petrology[M]. London, HardPress Publishing, 1928.

    Google Scholar

    [11] Fossen H. Structural Geology. Structural geology[M]. Cambridge University Press, 2010.

    Google Scholar

    [12] Petit J P. Criteria for the sense of movement on fault surfaces in brittle rocks[J]. Journal of Structural Geology, 1987, 9:597-608. doi: 10.1016/0191-8141(87)90145-3

    CrossRef Google Scholar

    [13] Doblas M. Slickenside kinematic indicators[J]. Tectonophysics, 1998, 295:187-197. doi: 10.1016/S0040-1951(98)00120-6

    CrossRef Google Scholar

    [14] Angelier J. Fault slip analysis and palaeostress reconstruction[C]//Hancock P L. Continental Deformation. London: Pergamon Press, 1994: 53-100.

    Google Scholar

    [15] Tjia H D. Slickensides and fault movements[J]. GSA Bulletin, 1964, 75:683-686. doi: 10.1130/0016-7606(1964)75[683:SAFM]2.0.CO;2

    CrossRef Google Scholar

    [16] Riedel W. Zur Mechanik geologischer brucherscheinungen[J]. Zentralblatt fur Mineralogie, Geologie und Palaontologie, 1929, 1929B:354-368.

    Google Scholar

    [17] Groshong R H J. Low-temperature deformation mechanisms and their interpretation[J]. GSA Bulletin, 1988, 100:1329-1360. doi: 10.1130/0016-7606(1988)100<1329:LTDMAT>2.3.CO;2

    CrossRef Google Scholar

    [18] Logan J M, Dengo C A, Higgs N G, et al. Fabrics of experimental fault zones: their development and relationship to mechanical behavior[C]//Evans B, Wong T. Fault mechanics and transport properties of rocks. San Diego: Academic Press, 1992: 33-67.

    Google Scholar

    [19] Brosch F J, Kurz W. Fault damage zones dominated by high-angle fractures within layer-parallel brittle shear zones:examples from the eastern Alps[J]. Geological Society, London, Special Publications, 2008, 299(1):75-95. doi: 10.1144/SP299.5

    CrossRef Google Scholar

    [20] Richard P D, Naylor M A, Koopman A. Experimental models of strike-slip tectonics[J]. Petroleum Geoscience, 1995, 1:71-80. doi: 10.1144/petgeo.1.1.71

    CrossRef Google Scholar

    [21] Keller J V A, Hall S H, McClay K R. Shear fracture pattern and microstructural evolution in transpression fault zones from field and laboratory studies[J]. Journal of Structural Geology, 1997, 19:1173-1187. doi: 10.1016/S0191-8141(97)00042-4

    CrossRef Google Scholar

    [22] Tindall S E. Development of oblique-slip basement-cored uplifts: Insights from the Kaibab uplift and from physical models[D]. The University of Arizona: Ph D Thesis, 2000.

    Google Scholar

    [23] Tindall S E, Davis G H. Monocline development by oblique-slip fault-propagation folding:the East Kaibab monocline, Colorado Plateau, Utah[J]. Journal of Structural Geology, 1999, 21:1303-1320. doi: 10.1016/S0191-8141(99)00089-9

    CrossRef Google Scholar

    [24] Naylor M A, Mandl G, Sijpesteijn C H K. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8:737-752. doi: 10.1016/0191-8141(86)90022-2

    CrossRef Google Scholar

    [25] Kim Young-Seog, Peacock D C P, Sanderson D J. Fault damage zones[J]. Journal of Structural Geology, 2004, 26:503-517. doi: 10.1016/j.jsg.2003.08.002

    CrossRef Google Scholar

    [26] Hancock P L, Barka A A. Kinematic indicators on active normal faults in western Turkey[J]. Journal of Structural Geology, 1987, 9:573-584. doi: 10.1016/0191-8141(87)90142-8

    CrossRef Google Scholar

    [27] Chester F M, Chester J S. Stress and deformation along wavy frictional faults[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B10):23421-23430. doi: 10.1029/2000JB900241

    CrossRef Google Scholar

    [28] Davis G A, 郑亚东.变质核杂岩的定义、类型及构造背景[J].地质通报, 2002, 21(4):185-192.

    Google Scholar

    [29] Sagy A, Brodsky E E, Axen G J. Evolution of fault-surface roughness with slip[J]. Geology, 2007, 35(3):283-286. doi: 10.1130/G23235A.1

    CrossRef Google Scholar

    [30] Gamond J F. Displacement features associated with fault zones:a comparison between observed examples and experimental models[J]. Journal of Structural Geology, 1983, 5:33-45. doi: 10.1016/0191-8141(83)90005-6

    CrossRef Google Scholar

    [31] Cowgill E, Arrowsmith J R, Yin A, et al. The akato tagh bend along the altyn tagh fault, northwest Tibet 2:active deformation and the importance of transpression and strain hardening within the Altyn Tagh system[J]. GSA Bulletin, 2004, 116:1443-1464. doi: 10.1130/B25360.1

    CrossRef Google Scholar

    [32] Woodcock N H, Schubert C. Continent strike-slip tectonics[C]//Hancock P L. Continental Deformation. London: Pergamon Press, 1994: 251-263.

    Google Scholar

    [33] Hancock P L. Brittle microtectonics:principles and practice[J]. Journal of Structural Geology, 1985, 7:437-457. doi: 10.1016/0191-8141(85)90048-3

    CrossRef Google Scholar

    [34] Pollard D D, Segall P, Delaney P T. Formation and interpretation of dilatant echelon cracks[J]. GSA Bulletin, 1982, 93(12):1291-1303. doi: 10.1130/0016-7606(1982)93<1291:FAIODE>2.0.CO;2

    CrossRef Google Scholar

    [35] Rothery E. En echelon vein array development in extension and shear[J]. Journal of Structural Geology, 1988, 10(1):63-71. doi: 10.1016/0191-8141(88)90128-9

    CrossRef Google Scholar

    [36] Aydin A, Schultz R A. Effect of mechanical interaction on the development of strike-slip faults with echelon patterns[J]. Journal of Structural Geology, 1990, 12(1):123-129. doi: 10.1016/0191-8141(90)90053-2

    CrossRef Google Scholar

    [37] Tjia H D. Fault movement, reoriented stress field and subsidiary structures[J]. Pacific Geology, 1971, 5, 49-90.

    Google Scholar

    [38] Doblas M, Mahecha V, Hoyos M. Slickenside and fault surface kinematic indicators on active normal faults of the Alpine Betic cordilleras, Granada, southern Spain[J]. Journal of Structural Geology, 1997, 19(2):159-170. doi: 10.1016/S0191-8141(96)00086-7

    CrossRef Google Scholar

    [39] Platt J P, Vissers R L M. Extensional structures in anisotropic rocks[J]. Journal of Structural Geology, 1980, 2:397-410. doi: 10.1016/0191-8141(80)90002-4

    CrossRef Google Scholar

    [40] Hancock P L. The analysis of en-echelon veins[J]. Geological Magzine, 1972, 109:269-276. doi: 10.1017/S0016756800039315

    CrossRef Google Scholar

    [41] Norris D K, Barron K. Structural analysis of features on natural and artificial faults[C]//Baer A, Norris D K. Research in Tectonics. Geological Survey of Canada Paper, 1969: 68-52, 136-167.

    Google Scholar

    [42] Means W D. A newly recognized type of slickenside striation[J]. Journal of Structural Geology, 1987, 9:585-590. doi: 10.1016/0191-8141(87)90143-X

    CrossRef Google Scholar

    [43] Engelder J T. Microscopic wear grooves on slickensides:Indicators of paleoseismicity[J]. Journal of geophysical Research, 1974, 79(29):4387-4392. doi: 10.1029/JB079i029p04387

    CrossRef Google Scholar

    [44] Wilson G. The tectonic significance of small scale structures and their importance to the geologist in the field[M]. Societé Geologique de Belgique, 1961.

    Google Scholar

    [45] Hansen E. Strain Facies[M]. Berlin, New York, Springer-Verlag, 1971.

    Google Scholar

    [46] Julivert M, Marcos A. Superimposed folding under flexural conditions in the Cantabrian Zone (Hercynian Cordillera, northwest Spain)[J]. American Journal of Science, 1973, 273(5):353-375. doi: 10.2475/ajs.273.5.353

    CrossRef Google Scholar

    [47] Hatcher R D. Macroscopic polyphase folding illustrated by the Toxaway dome, eastern Blue Ridge, South Carolina-North Carolina[J]. GSA Bulletin, 1977, 88(11):1678-1688. doi: 10.1130/0016-7606(1977)88<1678:MPFIBT>2.0.CO;2

    CrossRef Google Scholar

    [48] Grujic D, Walter T R, Gärtner H. Shape and structure of analogue models of refolded layers[J]. Journal of Structural Geology, 2002, 24(8):1313-1326. doi: 10.1016/S0191-8141(01)00134-1

    CrossRef Google Scholar

    [49] Ramsay J G. Folding and Fracturing of Rocks[J]. New York-London, 1967.

    Google Scholar

    [50] Ramsay J G, Huber I M. The Techniques of modern structural geology. volume 2:folds and fractures[M]. London-San Diego, 1987.

    Google Scholar

    [51] Ramsay J G, Lisle R J. The Techniques of modern structural geology. volume 3:applications of continuum mechanics in structural geology[M]. London-San Diego, 2000.

    Google Scholar

    [52] Thiessen R. Two-dimensional refold interference patterns[J]. Journal of Structural Geology, 1986, 8(5):563-573. doi: 10.1016/0191-8141(86)90005-2

    CrossRef Google Scholar

    [53] Thiessen R L, Means W D. Classification of fold interference patterns:a reexamination[J]. Journal of structural Geology, 1980, 2(3):311-316. doi: 10.1016/0191-8141(80)90019-X

    CrossRef Google Scholar

    [54] Moore R R, Johnson S E. Three-dimensional reconstruction and modelling of complexly folded surfaces using mathematica[J]. Computers & Geosciences, 2001, 27(4):401-418.

    Google Scholar

    [55] Grasemann B, Wiesmayr G, Draganits E, et al. Classification of refold structures[J]. The Journal of Geology, 2004, 112(1):119-125. doi: 10.1086/379696

    CrossRef Google Scholar

    [56] Weiss L E. Geometry of superposed folding[J]. GSA Bulletin, 1959, 70(1):91-106. doi: 10.1130/0016-7606(1959)70[91:GOSF]2.0.CO;2

    CrossRef Google Scholar

    [57] Watkinson A J. Patterns of fold interference:influence of early fold shapes[J]. Journal of Structural Geology, 1981, 3(1):19-23. doi: 10.1016/0191-8141(81)90053-5

    CrossRef Google Scholar

    [58] Johns M K, Mosher S. Physical models of regional fold superposition:the role of competence contrast[J]. Journal of Structural Geology, 1996, 18(4):475-492.

    Google Scholar

    [59] Ghosh S K, Ramberg H. Buckling experiments on intersecting fold patterns[J]. Tectonophysics, 1968, 5(2):89-105. doi: 10.1016/0040-1951(68)90083-8

    CrossRef Google Scholar

    [60] Ghosh S K, Mandal N, Khan D, et al. Modes of superposed buckling in single layers controlled by initial tightness of early folds[J]. Journal of Structural Geology, 1992, 14(4):381-394. doi: 10.1016/0191-8141(92)90100-B

    CrossRef Google Scholar

    [61] Ghosh S K, Mandal N, Sengupta S, et al. Superposed buckling in multilayers[J]. Journal of Structural Geology, 1993, 15(1):95-111. doi: 10.1016/0191-8141(93)90081-K

    CrossRef Google Scholar

    [62] Gruji cD. The influence of initial fold geometry on type 1 and type 2 interference patterns:an experimental approach[J]. Journal of Structural Geology, 1993, 15(3/5):293-307.

    Google Scholar

    [63] Li J Y. Late Neoproterozoic and paleozoic tectonic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3):304-322.

    Google Scholar

    [64] 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15.

    Google Scholar

    [65] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4):370-395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [66] Xiao W, Han C, Yuan C, et al. Middle cambrian to permian subduction-related accretionary orogenesis of northern Xinjiang, NW China:implications for the tectonic evolution of central asia[J]. Journal of Asian Earth Sciences, 2008, 32(2):102-117.

    Google Scholar

    [67] 甘肃省地质矿产局.甘肃省区域地质志[M].北京:地质出版社, 1989.

    Google Scholar

    [68] Zhang J, Cunningham D. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 2012, 31:1-19.

    Google Scholar

    [69] 沈其韩, 耿元生, 王新社, 等.阿拉善地区前寒武纪斜长角闪岩的岩石学、地球化学、形成环境和年代学[J].岩石矿物学杂志, 2005, 24(1):21-31.

    Google Scholar

    [70] 杨振德, 潘行适, 杨易福.阿拉善断块及邻区地质构造特征与矿产[M].北京:科学出版社, 1988.

    Google Scholar

    [71] 内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996.

    Google Scholar

    [72] Wu S J, Hu J M, Ren M H, et al. Petrography and zircon U-Pb isotopic study of the bayanwulashan complex:constrains on the paleoproterozoic evolution of the alxa block, westernmost north China craton[J]. Journal of Asian Earth Sciences, 2014, 94:226-239. doi: 10.1016/j.jseaes.2014.05.011

    CrossRef Google Scholar

    [73] 李俊建, 沈保丰, 李惠民, 等.内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄[J].地质通报, 2004, 23(12):1243-1245. doi: 10.3969/j.issn.1671-2552.2004.12.013

    CrossRef Google Scholar

    [74] 耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J].中国地质, 2006, 33(1):138-145.

    Google Scholar

    [75] 耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J].中国地质, 2007, 34(2):77-87.

    Google Scholar

    [76] Zhang J, Li J Y, Xiao W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern alxa block, NW China:new constraints on the relationship between the north China plate and the alxa block[J]. Journal of Structural Geology, 2013, 57:38-57. doi: 10.1016/j.jsg.2013.10.002

    CrossRef Google Scholar

    [77] Zhang J, Li J Y, Zhang B H, et al. Timing of amalgamation of the alxa block and the north China block:constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 2016:668-669.

    Google Scholar

    [78] Zhang J, Zhang Y P, Xiao W X, et al. Linking the alxa terrane to the eastern gondwana during the early paleozoic:Constraints from detrital zircon U-Pb ages and cambrian sedimentary records[J]. Gondwana Research, 2015, 28(3):1168-1182. doi: 10.1016/j.gr.2014.09.012

    CrossRef Google Scholar

    [79] Liu S. The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China[J]. Journal of Asian Earth Sciences, 1998, 16(4):369-383. doi: 10.1016/S0743-9547(98)00020-8

    CrossRef Google Scholar

    [80] 张进, 马宗晋, 任文军.鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制[J].地质学报, 2004, 78(5):600-611.

    Google Scholar

    [81] 王进寿, 张开成, 王占昌, 等.西宁盆地深部构造与地震[J].高原地震, 2006, 18(3):16-24.

    Google Scholar

    [82] Zhang J, Cunningham D. Polyphase transpressional development of a NNE-striking basement-cored anticline in the Xining basin, northeastern qinghai-tibetan plateau[J]. Geological Magazine, 2013, 150:626-638. doi: 10.1017/S0016756812000866

    CrossRef Google Scholar

    [83] Darby B J, Ritts B D. Mesozoic contractional deformation in the middle of the asian tectonic collage:the intraplate western ordos fold-thrust belt, China[J]. Earth and Planetary Science Letters, 2002, 205(1):13-24.

    Google Scholar

    [84] Darby B J, Ritts B D. Mesozoic structural architecture of the lang shan, north-central China:intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 2007, 29(12):2006-2016. doi: 10.1016/j.jsg.2007.06.011

    CrossRef Google Scholar

    [85] Zhang J, Li J Y, Li Y F, et al. Mesozoic-Cenozoic multi-stage intraplate deformation events in the Langshan region and their tectonic implications[J]. Acta Geologica Sinica, 2014, 88(1):78-102. doi: 10.1111/acgs.2014.88.issue-1

    CrossRef Google Scholar

    [86] Dan W, Li X H, Wang Q, et al. Phanerozoic amalgamation of the alxa block and north China craton:evidence from paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Research, 2016, 32:105-121. doi: 10.1016/j.gr.2015.02.011

    CrossRef Google Scholar

    [87] Zhao G, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [88] 浙江省地质矿产局.浙江省区域地质志[M].北京:地质出版社, 1989.

    Google Scholar

    [89] 福建省地质矿产局.福建省区域地质志[M].北京:地质出版社, 1985.

    Google Scholar

    [90] 广东省地质矿产局.广东省区域地质志[M].北京:地质出版社, 1988.

    Google Scholar

    [91] 水涛.中国东南大陆基底构造格局[J].中国科学(B辑), 1987(4):78-86.

    Google Scholar

    [92] 水涛, 徐步台, 梁如华, 等.中国浙闽变质基底地质[M].北京:科学出版社, 1988.

    Google Scholar

    [93] 水涛, 徐步台, 梁如华, 等.绍兴-江山古陆对接带[J].科学通报, 1986, 31(6):444-448.

    Google Scholar

    [94] 孔祥生, 包超民, 顾明光.浙江诸暨地区陈蔡群主要地质特征及其构造演化探讨[J].浙江地质, 1994, (1):15-29.

    Google Scholar

    [95] 孔祥生, 李志飞, 冯长根, 等.浙江陈蔡地区前寒武纪地质(前寒武纪地质第7号)[M].北京:地质出版社, 1995.

    Google Scholar

    [96] 程海.浙西北晚元古代早期碰撞造山带的初步研究[J].地质论评, 1991, 37(3):203-213.

    Google Scholar

    [97] 程海.浙西北晚元古代岛弧火山岩的地球化学研究[J].地球化学, 1993, (1):18-27.

    Google Scholar

    [98] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic WuyiYunkai orogeny, southeastern South China:New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122(5/6):772-793.

    Google Scholar

    [99] 胡艳华, 顾明光, 徐岩, 等.浙江诸暨地区陈蔡群加里东期变质年龄的确认及其地质意义[J].地质通报, 2011, 30(11):1661-1670. doi: 10.3969/j.issn.1671-2552.2011.11.002

    CrossRef Google Scholar

    [100] 赵国春, 孙德有, 贺同兴.陈蔡群构造变形特征及变形时代讨论[J].浙江地质, 1994, (1):38-46.

    Google Scholar

    [101] 赵国春, 孙德有.浙西南陈蔡群变质阶段划分及变质作用p-TD轨变研究[J].吉林大学学报, 1994, (3):246-253.

    Google Scholar

    [102] Zhao G, Cawood P A. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision-related assembly of the South China Craton[J]. American Journal of Science, 1999, 299(4):309-339. doi: 10.2475/ajs.299.4.309

    CrossRef Google Scholar

    [103] Zhang J, Li J Y, Xiao W X, et al. Multistage Deformation in the Northeastern Segment of the Jiangshao Fault (Suture) Belt:Constraints for the Relationship between the Yangtze Plate and the Cathaysia Old Land[J]. Acta Geologica Sinica, 2013, 87(4):948-978. doi: 10.1111/acgs.2013.87.issue-4

    CrossRef Google Scholar

    [104] 高林志, 丁孝忠, 刘燕学, 等.江山-绍兴断裂带陈蔡岩群片麻岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质通报, 2014, 33(5):641-648.

    Google Scholar

    [105] Wang D, Zheng J, Ma Q, et al. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China[J]. Lithos, 2013, 175:124-145.

    Google Scholar

    [106] Xiao W, He H. Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China)[J]. GSA Bulletin, 2005, 117(7/8):945-961.

    Google Scholar

    [107] Zhou X, Zhu Y. Late Proterozoic colisional orogen and geosuture in Southeastern China:Petrological evidence[J]. Acta Geochimica, 1993, 12(3):239-251.

    Google Scholar

    [108] Zhang J, Qu J F, Zhao H, et al. Paleozoic to Mesozoic deformation of eastern Cathaysia, a case study of Chencai Complex, Zhejiang Province, eastern China and its tectonic implications[J]. GSA Bulletin, 2018(accepted).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Article Metrics

Article views(715) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint