2018 Vol. 37, No. 2-3
Article Contents

YAN Zhen, WANG Zongqi, FU Changlei, NIU Manlan, JI Wenhua, LI Rongshe, QI Shengsheng, MAO Xiaochang. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 2018, 37(2-3): 167-191.
Citation: YAN Zhen, WANG Zongqi, FU Changlei, NIU Manlan, JI Wenhua, LI Rongshe, QI Shengsheng, MAO Xiaochang. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 2018, 37(2-3): 167-191.

Characteristics and thematic geological mapping of mélanges

  • Mélange is the commonest geological body and the most fundamental tectonic facies of the orogenic belt around the world. It represents a mappable (1:25000 or more) geological unit formed by multiple geological processes and consists of blocks and matrix showing high stratigraphic disruption and a chaotic internal structure. The formation environment of mélanges is unequal to their emplacement environment, and hence not all of the mélanges were formed around the plate boundary reflecting plate tectonics. Ophiolitic mélanges and accretionary complexes can be used as the direct discriminating marks of ancient oceanic basin and convergent plate boundaries, and their texture and composition as well as spatial and temporal relationship have coevally recorded the development of oceanic plate stratigraphy and the lateral and vertical growth of the continental crust. On the basis of an ideal model of oceanic plate stratigraphy (including seamount) and Penronse ophiolite sequence, thematic geological mapping is the most effective way to clarify the texture and composition, spatial and temporal relationship, and formation mechanism of mélanges. The data obtained can provide direct evidence for reconstructing ocean-continental framework and improving our knowledge on the texture of orogenic belts, and can also guide mineral deposit exploration and ore prospecting plan.

  • 加载中
  • [1] Şengör A M C. How scientometry is killing science[J]. GSA Today, 2014, 12:44-45.

    Google Scholar

    [2] Wakita K. Mappable features of mélanges derived from ocean plate stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes in southwest Japan[J]. Tectonophysics, 2012, 568/569:74-85. doi: 10.1016/j.tecto.2011.10.019

    CrossRef Google Scholar

    [3] Şengör A M C. Outcrops, isotopic ages, terranes and the undesirable fate of tectonic interpretations[J]. Geodinamica Acta, 2014, 26:159-174.

    Google Scholar

    [4] Safonova I, Maruyama S, Kojima S, et al. Recognizing OIB and MORB in accretionary complexes:a new approach based on ocean plate stratigraphy, petrology and geochemistry[J]. Gondwana Research, 2016, 33:92-114. doi: 10.1016/j.gr.2015.06.013

    CrossRef Google Scholar

    [5] Hsü K. The principles of mélanges and their bearing on the Franciscan-Knoxville Paradox[J]. Geological Society of America Bulletin, 1968, 79:1063-1074. doi: 10.1130/0016-7606(1968)79[1063:POMATB]2.0.CO;2

    CrossRef Google Scholar

    [6] Silver E A, Beutner E C. Mélanges[J]. Geology, 1980, 8:32-34. doi: 10.1130/0091-7613(1980)8<32:M>2.0.CO;2

    CrossRef Google Scholar

    [7] Raymond L A. Classification of mélanges[J]. Geological Society of America Special Paper, 1984, 198:7-20. doi: 10.1130/SPE198

    CrossRef Google Scholar

    [8] Festa A, Pini G A, Dilek Y, et al. Mélanges and mélange-forming processes:a historical overview and new concepts[J]. International Geology Review, 2010, 52:1040-1105. doi: 10.1080/00206810903557704

    CrossRef Google Scholar

    [9] Festa A, Dilek Y, Pini G A, et al. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations:redefining and classifying mélanges[J]. Tectonophysics, 2012, 568/569:7-24. doi: 10.1016/j.tecto.2012.05.021

    CrossRef Google Scholar

    [10] 李继亮.碰撞造山带大地构造相.现代地质学论文集(上)[M].南京:南京大学出版社, 1992:9-29.

    Google Scholar

    [11] 李继亮.全球大地构造相刍议[J].地质通报, 2009, 28:1375-1381. doi: 10.3969/j.issn.1671-2552.2009.10.002

    CrossRef Google Scholar

    [12] Robertson A H F. Role of the tectonic facies concept in the orogenic analysis and its application to Tethys in the eastern Mediterranean region[J]. Earth-Science Reviews, 1994, 37:139-213. doi: 10.1016/0012-8252(94)90028-0

    CrossRef Google Scholar

    [13] 潘桂棠, 肖庆辉, 陆松年, 等.大地构造相的定义、划分、特征及其鉴别标志[J].地质通报, 2008, 27:1614-1637.

    Google Scholar

    [14] Mitchell A H G. Flysch-ophiolite successions:polarity indicators in arc and collision-type orogens[J]. Nature, 1974, 248:748-749.

    Google Scholar

    [15] Maruyama S. Pacific-type orogeny revised:Miyashiro-type orogeny proposed[J]. Island Arc, 1997, 6:91-120. doi: 10.1111/iar.1997.6.issue-1

    CrossRef Google Scholar

    [16] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and Permian Solonker suture, Inner Mongolia, China:termination of the central Asian orogenicbelt[J]. Tectonics, 2003, 22:1069, doi:10.1029/2002TC001484.

    CrossRef Google Scholar

    [17] Kusky T, Windley B, Safonova I, et al. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history:a record of 3.8 billion years of sea floor spreading, subduction, and accretion[J]. Gondwana Research, 2013, 24:501-547. doi: 10.1016/j.gr.2013.01.004

    CrossRef Google Scholar

    [18] Şengör A M C. The repeated rediscovery of mélanges and its implication for the possibility and the role of objective evidence in the scientific enterprise[J]. Geological Society of America Special Papers, 2003, 373:385-445.

    Google Scholar

    [19] Cawood P A, Kroner A, Collins W J, et al. Earth accretionary orogens in space and time[J]. Geological Society of London Special Publication, 2009, 318:1-36. doi: 10.1144/SP318.1

    CrossRef Google Scholar

    [20] Wakabayashi J, Dilek Y. Introduction:Characteristics and tectonic settings of mélanges, and their significance for societal and engineering problems[J]. The Geological Society of America Special Paper, 2011, 480:Ⅴ-Ⅹ.

    Google Scholar

    [21] Dilek Y, Festa F, Ogawa Y, et al. Chaos and geodynamics:mélanges, mélange-forming processes and their significance in the geological record[J]. Tectonophysics, 2012, 568/569:1-6. doi: 10.1016/j.tecto.2012.08.002

    CrossRef Google Scholar

    [22] Kitamura Y, Kimura G. Dynamic role of tectonic mélange during interseismic process of plate boundary mega earthquakes[J]. Tectonophysics, 2012, 568/569:39-52. doi: 10.1016/j.tecto.2011.07.008

    CrossRef Google Scholar

    [23] Isozaki Y, Maruyama S, Furuoka F. Accreted oceanic materials in Japan[J]. Tectonophysics, 1990, 181:179-205. doi: 10.1016/0040-1951(90)90016-2

    CrossRef Google Scholar

    [24] 王宗起, 闫臻, 王涛, 等.秦岭造山带主要疑难地层时代研究的新进展[J].地球学报, 2009, 30(5):561-570.

    Google Scholar

    [25] 李荣社, 计文化, 辜平阳, 等.造山带(蛇绿)构造混杂带填图方法[M].武汉:中国地质大学出版社, 2016:1-128.

    Google Scholar

    [26] 中国地质调查局.中国地质调查局地质调查专报G1:青藏高原区域地质调查野外工作手册[M].武汉:中国地质大学出版社, 2001:1-282.

    Google Scholar

    [27] NACSN (North American Commission on Stratigraphic Nomenclature). Amendments to the American stratigraphic code[J]. American Association of Petroleum Geologists Bulletin, 2005, 89:1459-1464. doi: 10.1306/05230505015

    CrossRef Google Scholar

    [28] Vannucchi P, Bettelli G. Myths and recent progress regarding the Argille scagliose, northern Apennines, Italy[J]. International Geology Review, 2010, 52:1106-1137. doi: 10.1080/00206810903529620

    CrossRef Google Scholar

    [29] 全国地层委员会.中国地层指南及中国地层指南说明书(修订版)[M].北京:地质出版社, 2001:1-59.

    Google Scholar

    [30] Greenly E. The Geology of Anglesey[I]. Great Britain Geological Survey Memoir 1, 1919: 1-980.

    Google Scholar

    [31] Bailey E B, McCallien W J. The Ankara mélange and the Anatolian thrust[J]. Nature, 1950, 166:938-943. doi: 10.1038/166938a0

    CrossRef Google Scholar

    [32] Bailey E B, McCallien W J. Serpentinite lavas, the Ankara mélange and the Anatolian thrust[J]. Philosophical Transaction of the Royal Society of Edinburgh, 1953, 62:403-442.

    Google Scholar

    [33] Gansser A. New aspects of the geology in central Iran[C]//Proceedings of the 4th World Petroleum Congress: Rome, Casa Editrice Carlo Colombo, Section 1/A/5, 1955: 279-300.

    Google Scholar

    [34] Studer B. Index der petrographie und stratigraphie der schweiz und ihrer umgebungen[M]. Bern, Verlag Der J Dalp' schen Buch-Und Kunstdhandlung (K. Schmid), 1872:1-272.

    Google Scholar

    [35] Kaufmann F J. Emmen-und schlierengegenden nebst umgebungen bis zur brünigstrasse und linie lungern-grafenort[M]. Beiträge zur Geologische Karte der Schweiz, 1886, 24(1):1-608.

    Google Scholar

    [36] Flores G. Les résultats des études pour les recherches pétroliféres en sicile: discussion[C]//Proceedings of the 4th World Petroleum Congress: Rome, Casa Editrice Carlo Colombo, Section 1/A/2, 1955: 121-122.

    Google Scholar

    [37] Flores G. The results of the studies on petroleum exploration in Sicily: discussion[C]//Bollettino del Servizio Geologico d'Italia, 1956, 78: 46-47.

    Google Scholar

    [38] Flores G. Evidence of slump phenomena (olistostromes) in areas of hydrocarbon exploration in Sicily[C]//Proceedings of the 5th World Petroleum Congress, New York, USA, Section 1, John Wiley & Sons, Chichester, 1959: 259-275.

    Google Scholar

    [39] Hsü K J. Mélanges and their distinction from olistostromes[C]//Dott R H Jr, Shaver R H. Modern and Ancient Geosynclinal Sedimentation. SEPM Special Publication, 1974, 19: 321-333.

    Google Scholar

    [40] Raymond L A, Terranova T. The mélange problem-a review[J]. Geological Society of America Special Paper, 1984, 198:1-5. doi: 10.1130/SPE198

    CrossRef Google Scholar

    [41] Cowan D S. Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of north America[J]. Geological Society of America Bulletin, 1985, 96:451-462. doi: 10.1130/0016-7606(1985)96<451:SSIMAC>2.0.CO;2

    CrossRef Google Scholar

    [42] Wakita K. Origin of chaotically mixed rocked bodies in the Early Jurassic to Early Cretaceous sedimentationary complex of the Mino terrane, central Japan[J]. Bulletin of the Geological Survey of Japan, 1988, 39:675-757.

    Google Scholar

    [43] Bailey R H, Skehan J W, Dreier R B, et al. Olistostromes of the Avalonian terrane of southeastern New England[J]. Geological Society of America Special Paper, 1989, 228:93-112. doi: 10.1130/SPE228

    CrossRef Google Scholar

    [44] Tull J F, Telle W R. Tectonic setting of olistostromal units and associated rocks in the Talladega slate belt, Alabama Appalachians[J]. Geological Society of America Special Paper, 1989, 228:247-269. doi: 10.1130/SPE228

    CrossRef Google Scholar

    [45] Muller P D, Candela P A, Wylie A G. Liberty complex; polygenetic mélange in the central Maryland Piedmont[J]. Geological Society of America Special Paper, 1989, 228:113-134. doi: 10.1130/SPE228

    CrossRef Google Scholar

    [46] Lacazette A J J, Rast N. Tectonic mélange at Chunky Gal mountain, north Carolina[J]. Geological Society of America Special Paper, 1989, 228:217-227. doi: 10.1130/SPE228

    CrossRef Google Scholar

    [47] Rast N, Horton J W J. Mélanges and olistostromes in the Appalachians of the United States and mainland Canada:an assessment[J]. Geological Society of America Special Paper, 1989, 228:1-15. doi: 10.1130/SPE228

    CrossRef Google Scholar

    [48] Mori R, Ogawa Y, Hirano N, et al. Role of plutonic and metamorphic block exhumation in a forearc ophiolite mélange belt:an example from the Mineoka belt, Japan[J]. Geological Society of America Special Paper, 2011, 480:95-116. doi: 10.1130/9780813724805

    CrossRef Google Scholar

    [49] Osozawa S, Pavlis T, Flowers M F J. Sedimentary block-in-matrix fabric affected by tectonic shear, Miocene Nabae complex, Japan[J]. Geological Society of America Special Paper, 2011, 480:189-206. doi: 10.1130/9780813724805

    CrossRef Google Scholar

    [50] Wakabayashi J. Mélanges of the Franciscan complex, California:diverse structural settings, evidence for sedimentary mixing, and their connection to subduction processes[J]. Geological Society of America Special Paper, 2011, 480:117-142. doi: 10.1130/9780813724805

    CrossRef Google Scholar

    [51] Ernst W G. Franciscan mélanges:coherent blocks in a low-density, ductile matrix[J]. International Geology Review, 2016, 58:626-642.

    Google Scholar

    [52] Malatesta C, Crispini L, Federico L, et al. The exhumation of high pressure ophiolites (Voltri Massif, Western Alps):insights from structural and petrologic data on metagabbro bodies[J]. Tectonophysics, 2012, 568/569:102-123. doi: 10.1016/j.tecto.2011.08.024

    CrossRef Google Scholar

    [53] Byrne T. Early deformation in mélange terranes of the ghost rocks formation, Kodiak Islands, Alaska[J]. Geological Society of America Special Paper, 1984, 198:21-51. doi: 10.1130/SPE198

    CrossRef Google Scholar

    [54] Cloos M, Shreve R L. subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins; part Ⅱ, implications and discussion[J]. Pure and Applied Geophysics, 1988, 128:501-545. doi: 10.1007/BF00874549

    CrossRef Google Scholar

    [55] Codegone G, Festa A, Dilek Y. Formation of taconic mélanges and broken formations in the hamburg klippe, central Appalachian orogenic belt, eastern Pennsylvania[J]. Tectonophysics, 2012, 568/569:215-229. doi: 10.1016/j.tecto.2012.03.017

    CrossRef Google Scholar

    [56] Bailey E H, Irwin W P, Jones D L. Franciscan and related rocks, and their significance in the geology of western California[J]. California Division of Mines and Geology Bulletin, 1964, 83:1-177.

    Google Scholar

    [57] Saleeby J B. Kings River ophiolite, southwest Sierra Nevada foothills, California[J]. Geological Society of America Bulletin, 1978, 89:617-636. doi: 10.1130/0016-7606(1978)89<617:KROSSN>2.0.CO;2

    CrossRef Google Scholar

    [58] Saleeby J B. Kaweah serpentinite melange, southwest Sierra Nevada foothills, California[J]. Geological Society of America Bulletin, 1979, 90:29-46. doi: 10.1130/0016-7606(1979)90<29:KSMSSN>2.0.CO;2

    CrossRef Google Scholar

    [59] Wakita K. Geology of the mino district with geological sheet map at 1:50, 000[M]. Geology of Survey Japan, 1995:1-36.

    Google Scholar

    [60] Gansser A. The ophiolitic mélange, a world-wide problem on Tethyan examples[J]. Eclogae Geologicae Helvetiae, 1974, 67:479-507.

    Google Scholar

    [61] Wakita K. OPS mélange:a new term for mélanges of convergent margins of the word[J]. International Geology Review, 2015, 57:529-539. doi: 10.1080/00206814.2014.949312

    CrossRef Google Scholar

    [62] Wakita K, Metcalfe I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Sciences, 2005, 24:670-702.

    Google Scholar

    [63] Safonova I Yu, Santosh M. Accretionary complexes in the asia-pacific region:tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25:126-158. doi: 10.1016/j.gr.2012.10.008

    CrossRef Google Scholar

    [64] Anonymous. Penrose field conference on ophiolites[J]. Geotimes, 1972, 17:24-25.

    Google Scholar

    [65] Marsaglia K M. Interarc and backarc basins[C]//Busby C J, Ingersoll RV. Tectonic Sedimentary Basins. Blackwell Science: 1995: 299-330.

    Google Scholar

    [66] Taylor B. Backarc Basins:Tectonics and magmatism[M]. Plenum Press, New York and London, 1995:1-524.

    Google Scholar

    [67] Taylor B, Natland J. Active margins and marginal basins of the western Pacific[M]. Geophysical Monograph Series, 1995, 88:1-417.

    Google Scholar

    [68] Barr S R, Temperley S, Tarney J. Lateral growth of the continental crust through deep level subduction-accretion:a reevaluation of central Greek Rhodope[J]. Lithos, 1999, 46:69-94. doi: 10.1016/S0024-4937(98)00055-3

    CrossRef Google Scholar

    [69] Sano H, Kojima S. Carboniferous to Jurassic oceanic rocks of Mino-Tamba-Ashio terrane, southwest Japan[J]. Memories of the Geological Society of Japan, 2000, 55:123-144.

    Google Scholar

    [70] Dilek Y, Furnes H. Ophiolite genesis and global tectonics:geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123:387-411. doi: 10.1130/B30446.1

    CrossRef Google Scholar

    [71] Bangs N L B, Gulick S P S, Shipley T H. Seamount subduction erosion in the Nankai trough and its potential impact on the seismogenic zone[J]. Geology, 2006, 34:701-704. doi: 10.1130/G22451.1

    CrossRef Google Scholar

    [72] Strasser M, Moore G F, Kimura G, et al. Origin and evolution of a splay fault in the Nankai accretionary wedge[J]. Nature Geoscience, 2009, 2:648-652. doi: 10.1038/ngeo609

    CrossRef Google Scholar

    [73] Karig D E, Sharman G F. Subduction and accretion in trenches[J]. Geological Society of America Bulletin, 1975, 86:377-389. doi: 10.1130/0016-7606(1975)86<377:SAAIT>2.0.CO;2

    CrossRef Google Scholar

    [74] Taira A, Byrne T, Ashi J. Photographic atlas of an accretionary prism[M]. Springer, Berlin, 1992.

    Google Scholar

    [75] Lallemand S E, Schnurle P, Malavieille J. Coulomb theory applied to accretionary and nonaccretionary wedges-possible causes for tectonic erosion and or frontal accretion[J]. Journal of Geophysical Research, 1994, 99:12033-12055. doi: 10.1029/94JB00124

    CrossRef Google Scholar

    [76] Von Huene R, Scholl D W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust[J]. Reviews of Geophysics, 1991, 29:279-316. doi: 10.1029/91RG00969

    CrossRef Google Scholar

    [77] Dewey J F, Bird J M. The origin and emplacement of the ophiolite suite:Appalachian ophiolites in Newfoundland[J]. Journal of Geophysical Research, 1971, 76:3179-3206. doi: 10.1029/JB076i014p03179

    CrossRef Google Scholar

    [78] Coleman R G. Ophiolites[M]. New York, Springer-Verlag, 1977:1-220.

    Google Scholar

    [79] Nicolas A. Structure of ophiolites and dynamics of oceanic lithosphere[M]. Dordrecht, the Netherlands, Kluwer Academic Publishers, 1989:1-367.

    Google Scholar

    [80] Dilek Y, Flower M F J. Arc-trench roll-back and forearc accretion:2. a model template for ophiolites in Albania, Cyprus, and Oman[J]. Geological Society of London Special Publication, 2003, 218:43-68. doi: 10.1144/GSL.SP.2003.218.01.04

    CrossRef Google Scholar

    [81] Cloos M. Lithosphere buoyancy and collisional orogenesis:subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J]. Geological Society of America Bulletin, 1993, 105:715-737. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2

    CrossRef Google Scholar

    [82] Lagabrielle Y, Guivel C, Maury R, et al. Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction:the Chile triple junction model[J]. Tectonophysics, 2000, 326:255-268. doi: 10.1016/S0040-1951(00)00124-4

    CrossRef Google Scholar

    [83] Shervais J W. Island arc and ocean crust ophiolites: contrasts in the petrology, geochemistry and tectonic style of ophiolite assemblages in the california coast ranges[C]//Malpas J, Moores E, Panayiotou A, et al. Ophiolites Oceanic Crustal Analogues: Proceedings of the Symposium 'Troodos 1987'. The Geological Survey Department Ministry of Agriculture and Natural Resources, Nicosia, 1990: 507-520.

    Google Scholar

    [84] Wakabayashi J. Anatomy of a subduction complex:architecture of the Franciscan complex, California, at multiple length and time scales[J]. International Geology Review, 2015, 57(8/9):669-746.

    Google Scholar

    [85] Lister G, Forster M. Tectonic mode switches and the nature of orogenesis[J]. Lithos, 2009, 113:274-291. doi: 10.1016/j.lithos.2008.10.024

    CrossRef Google Scholar

    [86] Coleman R G, Irwin W P. Ophiolites and ancient continental margins[M]. Springer Berlin Heidelberg, 1974:921-931.

    Google Scholar

    [87] Shervais J W, Choi S H, Sharp W D, et al. Serpentinite matrix mélange:implications of mixed provenance for mélange formation[J]. Geological Society of America Special Paper, 2011, 480:1-30. doi: 10.1130/9780813724805

    CrossRef Google Scholar

    [88] Gass I G. Is the Troodos massif of cyprus a fragment of mesozoicocean floor[J]. Nature, 1968, 220:39-42. doi: 10.1038/220039a0

    CrossRef Google Scholar

    [89] Coleman R G. Plate tectonic emplacement of upper mantle peridotites along continental edges[J]. Journal of Geophysical Research, 1971, 76:1212-1222. doi: 10.1029/JB076i005p01212

    CrossRef Google Scholar

    [90] Moores E M, Vine F J. The Troodos massif, Cyprus, and other ophiolites as oceanic crust:evaluation and implications[J]. Philosophical Transactions of the Royal Society of London, 1971, 268A:443-466.

    Google Scholar

    [91] Cann J R. The Troodos ophiolite and the upper ocean crust:a reciprocal traffic in scientific concepts[J]. Geological Society of America Special Paper, 2003, 373:309-321.

    Google Scholar

    [92] Kerr A C, Pearson D G, Nowell G. M. Magma source evolution beneath the Caribbean oceanic plateau:new insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts[J]. Geological Society of London Special Publication, 2009, 328:809-827. doi: 10.1144/SP328.31

    CrossRef Google Scholar

    [93] White R V, Tarney J, Kerr A C, et al. Modification of an oceanic plateau, Aruba, Dutch Daribbean:implications for the generation of continental crust[J]. Lithos, 1999, 46:43-68. doi: 10.1016/S0024-4937(98)00061-9

    CrossRef Google Scholar

    [94] Kusky T M, Polat A. Growth of granite-greenstone terrane at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305:43-73. doi: 10.1016/S0040-1951(99)00014-1

    CrossRef Google Scholar

    [95] Coleman R G. Prospecting for ophiolites along the California continental margin[J]. Geological Society of America Special Paper, 2000, 349:351-364.

    Google Scholar

    [96] Choi S H, Shervais J W, Mukasa S B. Supra-subduction and abyssal mantle peridotites of the coast range ophiolite, California[J]. Contributions to Mineralogy and Petrology, 2008, 156:551-576. doi: 10.1007/s00410-008-0300-6

    CrossRef Google Scholar

    [97] Ernst W G. Mineral chemistry of eclogites and related rocks from the Coltri group, western Liguria, Italy[J]. Tschermaks Mineralogische Und Petrographische Mitteilungen, 1976, 56:293-343.

    Google Scholar

    [98] Baldwin S L, Harrison T M. The P-T-t history of blocks in serpentinite-matrix mélange, west-central Baja California[J]. Geological Society of America Bulletin, 1992, 104:18-31. doi: 10.1130/0016-7606(1992)104<0018:TPTTHO>2.3.CO;2

    CrossRef Google Scholar

    [99] Tsujimori T, Matsumoto K, Wakabayashi J, et al. Franciscan eclogite revisited:reevaluation of the P-T evolution of tectonic blocks from Tiburon Peninsula, California, U.S.A[J]. Mineralogy and Petrology, 2006, 88:243-267. doi: 10.1007/s00710-006-0157-1

    CrossRef Google Scholar

    [100] Coleman R G. The diversity of ophiolites[J]. Geologie en Mijnbouw, 1984, 63:141-150.

    Google Scholar

    [101] Wakita K. Geology of the Hachiman district[M]. Quadrangle Series 1:50000 Geological Survey of Japan, 1984:1-89.

    Google Scholar

    [102] 吴浩若, 潘正莆."构造杂岩"及其地质意义——以西准噶尔为例[J].地质科学1991, 1:1-8.

    Google Scholar

    [103] 张克信, 殷鸿福, 朱云海, 等.造山带混杂岩区地质填图理论、方法与实践:以东昆仑造山带为例[M].武汉:中国地质大学出版社, 2001:1-165.

    Google Scholar

    [104] 罗建宁.大陆造山带沉积地质学研究的几个问题[J].地学前缘, 1994, 1:177-183.

    Google Scholar

    [105] 陈克强, 汤加富.构造地层单位研究[M].武汉:中国地质大学出版社, 1996:1-92.

    Google Scholar

    [106] 全国地层委员会.中国地层指南及中国地层指南说明书(修订版)[M].北京:地质出版社, 2001:1-59.

    Google Scholar

    [107] 黎敦朋, 肖爱芳, 张汉军.构造-蛇绿混杂岩工作方法、研究途径及填图单位划分[J].陕西地质, 2001, 19(2):91-97.

    Google Scholar

    [108] Shuttle Radar Topography Mission[EB/OL](2008-11-24)[2017-02-22] http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp.2008.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(2950) PDF downloads(33) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint