Citation: | XIANG Jie, CHEN Jianping, XIAO Keyan, LI Shi, ZHANG Zhiping, ZHANG Ye. 3D metallogenic prediction based on machine learning: A case study of the Lala copper deposit in Sichuan Province[J]. Geological Bulletin of China, 2019, 38(12): 2010-2021. |
Under the background of the vigorous development of big data, the quantitative prediction of mineral resources is the core part of geological big data. The basic idea of comprehensive analysis and mining of multi-information coincides with the concept of big data. With the Lala copper deposit as the study area, the authors carried out 3D mineral resources prediction based on machine learning. In this paper, 3D geological model was established to extract useful information of mineralization and build the quantitative prediction model of the study area. By using the "cube prediction model" prospecting method, the authors adopted the random forest algorithm of machine learning to calculate the probability distribution of mineralization in the study area. In this way, five prospecting prospective areas were delineated. The results show that the random forest has higher prediction accuracy and stability and can make quantitative evaluation on the importance of ore controlling factors. This study has successfully applied machine learning to the 3D mineral resources prediction and made a positive exploration for the prediction and evaluation of mineral resources in the future.
[1] | 肖克炎, 张晓华, 李景朝, 等.全国重要矿产总量预测方法[J].地学前缘, 2007, 14(5):20-26. doi: 10.3321/j.issn:1005-2321.2007.05.003 |
[2] | 赵鹏大, 李紫金, 胡光道.重点成矿区三维立体矿床统计预测——以安徽月山地区为例[M].武汉:中国地质大学出版社, 1992. |
[3] | 陈建平, 吕鹏, 吴文, 等.基于三维可视化技术的隐伏矿体预测[J].地学前缘, 2007, 4(5):54-61. doi: 10.3321/j.issn:1005-2321.2007.05.006 |
[4] | 陈建平, 于萍萍, 史蕊, 等.区域隐伏矿体三维定量预测评价方法研究[J].地学前缘, 2014, 21(5):211-220. |
[5] | Wang G W, Li R X, Emmanuel J M, et al. 3D geological modeling for prediction of subsurface Motargets in the Luanchuan district, China[J]. Ore Geology Reviews, 2015, 71:592-610. doi: 10.1016/j.oregeorev.2015.03.002 |
[6] | Wang G W, Zhang S, Yan C, et al. Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China[J]. Computers & Geosciences, 2011, 37(12):1976-1988. |
[7] | 肖克炎, 李楠, 孙莉, 等.基于三维信息技术大比例尺三维立体矿产预测方法及途径[J].地质学刊, 2012, 36(3):229-236. doi: 10.3969/j.issn.1674-3636.2012.03.229 |
[8] | Xiao K Y, Li N, Porwal A, et al. GIS-based 3D prospectivity mapping:A case study of Jiama copper-polymetallic deposit in Tibet, China[J]. Ore Geology Reviews, 2015, 71:611-632. doi: 10.1016/j.oregeorev.2015.03.001 |
[9] | 毛先成, 戴塔根, 吴湘滨, 等.危机矿山深边部隐伏矿体立体定量预测研究——以广西大厂锡多金属矿床为例[J].中国地质, 2009, 36(2):424-435. doi: 10.3969/j.issn.1000-3657.2009.02.016 |
[10] | 毛先成, 邹艳红, 陈进, 等.隐伏矿体三维可视化预测[M].长沙:中南大学出版社, 2011. |
[11] | Mao X C, Chen J, Deng H, et al. 3D Quantitative Predictivity of Concealed Ore Bodies in Fenghuangshan Copper Deposit, Tongling District, China[J]. Acta Geologica Sinica, 2015, 88(2s):454-456. |
[12] | 袁峰, 李晓辉, 张明明, 等.隐伏矿体三维综合信息成矿预测方法[J].地质学报, 2014, 88(4):630-643. |
[13] | Li X H, Yuan F, Zhang M M, et al. Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China[J]. Ore Geology Reviews, 2015, 71:633-654. doi: 10.1016/j.oregeorev.2015.06.001 |
[14] | Rodriguez G V, Sanchez C M, Chica O M, et al. Machine learning predictive models for mineral prospectively:An evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 2015, 71:804-818. doi: 10.1016/j.oregeorev.2015.01.001 |
[15] | Zhang S, Xiao K, Carranza E J M, et al. Maximum entropy and random forest modeling of mineral potential:Analysis of gold prospectivity in the Hezuo-Meiwu district, west Qinling Orogen, China[J]. Natural Resources Research, 2019, 28(3):645-664. doi: 10.1007/s11053-018-9425-0 |
[16] | Zuo R, Xiong Y. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods[J]. Natural Resources Research, 2017:1-9. |
[17] | O'Brien J J, Spry P G, Dan N, et al. Using Random Forests to distinguishgahnite compositions as an exploration guide to Broken Hill-type Pb-Zn-Agdeposits in the Broken Hill domain, Australia[J]. Journal of GeochemicalExploration, 2015, 149(149):74-86. |
[18] | Carranza E J M, Laborte A G. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values inAbra (Philippines)[J]. Computers & Geosciences, 2015, 74:60-70. |
[19] | 周家云, 陈家彪, 沈冰, 等.四川拉拉铜矿构造成矿动力学机制[J].大地构造与成矿学, 2008, 32(1):98-104. doi: 10.3969/j.issn.1001-1552.2008.01.013 |
[20] | 孙燕, 李承德.四川拉拉铜矿床成矿机制研究[J].成都地质学院学报, 1990, 4:1-9. |
[21] | Zhou J Y, Zheng R C, Zhu Z M, et al. Geochemistry and Sm-Nd Dating of the Gabbro in the LalaCopper Ore District, Sichuan Province, China[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2009, 28(2):111-122. |
[22] | 申屠保涌.四川会理拉拉厂铜矿床地质地球化学特征及成矿模式[J].沉积与特提斯地质, 1997, (21):115-130. |
[23] | 陈根文, 夏斌.四川拉拉铜矿床成因研究[J].矿物岩石地球化学通报, 2001, 20(1):42-44. doi: 10.3969/j.issn.1007-2802.2001.01.009 |
[24] | 朱志敏, 曾令熙, 周家云, 等.四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据[J].高校地质学报, 2009, 15(4):485-495. doi: 10.3969/j.issn.1006-7493.2009.04.007 |
[25] | 张武鹏, 余璨, 李峰, 等.四川拉拉会理红泥坡铜矿地质特征及找矿标志[J].有色金属工程, 2016, 6(2):80-84. doi: 10.3969/j.issn.2095-1744.2016.02.017 |
[26] | Breiman L. Classification and Regression Trees[M]. New York:Routledge, 1984. |
[27] | Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24:123-140. |
[28] | Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32. doi: 10.1023/A:1010933404324 |
[29] | 向杰, 陈建平, 胡桥, 等.基于矿床成矿系列的三维成矿预测——以安徽铜陵矿集区为例[J].现代地质, 2016, 30(1):230-238. doi: 10.3969/j.issn.1000-8527.2016.01.026 |
[30] | 董庆吉, 肖克炎, 陈建平, 等.西南"三江"成矿带北段区域成矿断裂信息定量化分析[J].地质通报, 2010, 29(10):1479-1485. doi: 10.3969/j.issn.1671-2552.2010.10.010 |
[31] | 向杰, 陈建平, 胡彬, 等.基于三维地质-地球物理模型的三维成矿预测-以安徽铜陵矿集区为例[J].地球科学进展, 2016, 31:603-614. doi: 10.11867/j.issn.1001-8166.2016.06.0603. |
Simplified geological map of the Lala orefield
Flow chart of the 3D quantitative prediction based on machine learning
Construction of random forest mineral resource prediction model based on the KNIME
3D geological entity model of the Lala copper deposit
Statistical analyses of the useful information of mineralization
Quantitative analyses of fault structural characteristics and the distribution of favorable mineralization information
Precision test of random forest quantitative prediction
Statistical chart of mineral control factors analyses of Lala quantitative prediction model
The process for delineating prospective area by random forest