Citation: | ZHANG Mingchao, CHEN Renyi, LI Jingchao, LI Yongsheng, YAO Lei, CHEN Hui, LAI Shouhua, WANG Tao. Carbon, oxygen and strontium isotope geochemical characteristics of the Qixiashan Pb-Zn polymetallic deposit, Jiangsu Province, and their indication significance[J]. Geological Bulletin of China, 2019, 38(9): 1529-1542. |
In this paper, the authors carried out the study of the carbon-oxygen-strontium isotope geochemistry of the samples from deep holes during the mineral prospecting work in the Qixiashan Pb-Zn polymetallic deposit. The results show that the δ13CV-PDB values for ore samples from the Qixiashan deposit vary from -5.1‰ to 1.9‰. From the shallow part downward, the δ13C and δ18O values of ore samples are in an increasing trend, which indicates that the carbon in the ore-forming fluids originated from the carbonate rocks and from the deep source of carbon in the mantle and magma. In the study of strontium isotope, the 87Sr/86Sr values of ore samples from the Qixiashan deposit vary from 0.704816 to 0.71405; a part is larger than the 87Sr/86Sr ratios (0.708329~0.709685) for limestone of the Huanglong strata, which is the surrounding rock of the orebodies, whereas the other part is less than 87Sr/86Sr ratios for limestone of the Huanglong strata. A comparison of the strontium isotopic compositions of different sources reveals that the strontium from the Qixiashan deposit has the characteristics of the mixed sources, i.e., the strontium of Proterozoic basement strata and the mantle source; the change of 87Sr/86Sr ratios in the surrounding rock alteration should be mainly caused by the ore-forming fluid, and the change of 87Sr/86Sr ratios in the process of wall rock alteration should be mainly caused by the ore-forming fluid. A comprehensive analysis of regional metallogenic geological characteristics shows that the ore-forming fluid in the Qixiashan deposit might have come from the granite hydrothermal period, and by the influence of thermal power, the ore-forming fluid flowed through the Proterozoic basement strata, forming the ore-forming fluid with mixed material sources. The mineralization process of the Qixiashan deposit was mainly caused by the fluid-rock reaction between the ore-forming fluid and the surrounding rock.
[1] | 刘沈衡.南京栖霞山铅锌多金属矿床地球物理勘查模式[J].物探与化探, 1999, 23(1):72-78. doi: 10.3969/j.issn.1000-8918.1999.01.014 |
[2] | 王世雄, 周宏.关于开发利用南京栖霞山矿区物化探资料的地质方法问题[J].地质学刊, 1993, 17(2):107-113. |
[3] | 杨元昭.南京栖霞山多金属矿区弱缓磁异常的性质及地质找矿意义[J].桂林理工大学学报, 1989, 9(2):202-208. |
[4] | 张明超, 陈仁义, 叶天竺, 等.江苏栖霞山铅锌多金属矿床成因探讨:流体包裹体及氢-氧-硫-铅同位素证据[J].岩石学报, 2017, 33(11):3453-3470. |
[5] | 魏新良, 龚德奎.南京栖霞山铅锌银矿床深部找铜前景[J].地质学刊, 2013, 37(2):230-235. doi: 10.3969/j.issn.1674-3636.2013.02.230 |
[6] | 曾正海.栖霞山矿区外围隐伏矿找矿经验[J].矿山地质, 1989, 39(3):8-13. |
[7] | 汪京, 蔡彩雯, 苏玉风.栖霞山铅锌多金属矿床矿石中银镉等伴生组分的赋存特点及综合利用[J].现代冶金, 1984, (2):21-28. |
[8] | 欧亦君, 郭晓山.试论伴共生金银矿在南京栖霞山铅锌矿床综合勘查中的重要意义[J].地质学刊, 1990, (4):61-62. |
[9] | 陈福鑫.南京大凹山铅锌硫矿床成因探讨[J].地质学刊, 1992, 16(3/4):180-187. |
[10] | 于海华, 张达玉, 周涛发.宁镇矿集区栖霞山铅锌矿床黄铁矿的成分标型及其成因意义[J].吉林大学学报(地球科学版), 2015, (S1):1510. |
[11] | 刘孝善, 陈诸麒, 陈永清, 等.南京栖霞山硫化物矿床的矿石结构构造及其对矿石的成因意义[J].南京大学学报, 1979, (4):75-94. |
[12] | 郭晓山, 肖振明, 欧亦君, 等.南京栖霞山铅锌矿床成因探讨[J].矿床地质, 1985, (1):11-21. |
[13] | 真允庆, 陈金欣.南京栖霞山铅锌矿床硫铅同位素组成及其成因[J].桂林理工大学学报, 1986, 6(4):319-328. |
[14] | 钟庆禄.南京栖霞山大型铅锌银多金属矿床的发现及其找矿远景[J].地质学刊, 1998, 22(1):56-61. |
[15] | 徐忠发, 曾正海.南京栖霞山铅锌银矿床成矿作用与岩浆活动关系探讨[J].地质学刊, 2006, 30(3):177-182. doi: 10.3969/j.issn.1674-3636.2006.03.003 |
[16] | 付强, 葛文胜, 王伟, 等.南京栖霞山铅锌银多金属矿床成矿物质来源:C、O、S、Pb同位素制约[J].矿物学报, 2011, (s1):578-579. |
[17] | 谢树成, 殷鸿福, 王红梅, 等.南京栖霞山铅锌银多金属矿床的成矿流体特征[J].地质科技情报, 1998, 17(s1):78-81. |
[18] | 叶水泉, 曾正海.南京栖霞山铅锌矿床流体包裹体研究[J].资源调查与环境, 2000, 21(4):266-274. doi: 10.3969/j.issn.1671-4814.2000.04.003 |
[19] |
桂长杰.江苏省南京市栖霞山铅锌矿矿床成因研究[D].南京大学硕士学位论文, 2012: 1-61. |
[20] | 张明超, 李景朝, 左群超, 等.江苏栖霞山铅锌银多金属矿床成矿时代探讨[J].中国矿业, 2015, 24(s2):128-134. |
[21] | 蔡彩雯.栖霞山铅锌多金属矿床物质成分与矿床成因[J].地质与勘探, 1983, (6):18-23. |
[22] | 肖振民, 郭晓山, 欧亦君, 等.栖霞山铅锌锰硫矿床的多源层控特征[J].地质与勘探, 1983, (9):1-7. |
[23] | 杨元昭.据深源磁异常的发现论栖霞山多金属矿矿床的成因[J].地质与勘探, 1986, 22(2):42-46. |
[24] | 蒋慎君, 刘沈衡.栖霞山铅锌银矿床深部地质构造特征及成因过程模型初探[J].地质学刊, 1990, (3):9-14. |
[25] | Liu S A, Li S G, He Y S, et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization[J]. Geochimica Et Cosmochimica Acta, 2010, 74(24):7160-7178. doi: 10.1016/j.gca.2010.09.003 |
[26] | Wang Y, Deng J F, Ji G Y. A perspective on the geotectonic setting of early Cretaceous adakite-like rocks in the Lower Reaches of Yangtze River and its significance for copper-gold mineralization[J]. Acta Petrologica Sinica, 2004, 20(2):297-314. |
[27] | 刘沈衡.南京栖霞山铅锌多金属矿床重磁异常及矿床成因解释[J].地质找矿论丛, 1991, (1):76-84. |
[28] | 毛建仁, 赵曙良.宁镇山脉岩基岩浆的化学演化[J].资源调查与环境, 1990, (1):15-28. |
[29] | 毛建仁, 苏郁香, 陈三元.长江中下游中酸性侵入岩与成矿[M].北京:地质出版社, 1994:1-60. |
[30] |
徐莺.宁镇中段燕山期岩浆岩成因、演化规律及其与铜多金属成矿关系研究[D].中南大学硕士学位论文, 2010: 1-60. |
[31] | 曾键年, 李锦伟, 陈津华, 等.宁镇地区安基山侵入岩SHRIMP锆石U-Pb年龄及其地质意义[J].地球科学-中国地质大学学报, 2013, 38(1):57-67. |
[32] | 王小龙, 曾键年, 马昌前, 等.宁镇地区燕山期侵入岩锆石U-Pb定年:长江中下游新一期成岩成矿作用的年代学证据[J].地学前缘, 2014, 21(6):289-301. |
[33] | 关俊朋, 韦福彪, 孙国曦, 等.宁镇中段中酸性侵入岩锆石U-Pb年龄及其成岩成矿指示意义[J].大地构造与成矿学, 2015, (2):344-354. doi: 10.3969/j.issn.1001-1552.2015.02.014 |
[34] | Mao J, Wang Y, Lehmann B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 2006, 29(3/4):307-324. |
[35] | 郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000:1-316. |
[36] | 彭建堂, 胡瑞忠.湘中锡矿山超大型锑矿床的碳、氧同位素体系[J].地质论评, 2001, 47(1):34-41. doi: 10.3321/j.issn:0371-5736.2001.01.005 |
[37] | 吕志成, 刘丛强, 刘家军, 等.紫阳黄柏树湾和竹山文峪河毒重石矿床锶同位素及碳氧同位素研究[J].地球化学, 2005, 34(6):557-573. doi: 10.3321/j.issn:0379-1726.2005.06.003 |
[38] | Taylor B E. Magmatic volatiles; Isotopic variation of C, H and S[J]. Rev. Mineral., 1986, 16(1):185-225. |
[39] | Veizer J, Holser W T, Wilgus C K. Correlation of 13C/12C and 34S/32S secular variations[J]. Geochimica Et Cosmochimica Acta, 1980, 44:579-587. doi: 10.1016/0016-7037(80)90250-1 |
[40] | Ohmoto H. Isotopes of sulfur and carbon[J]. Geochemistry of Hydrothermal Ore Deposits, 1979:509-567. |
[41] | Zheng Y F. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2[J]. Mineralium Deposita, 1990, 25(4):246-250. |
[42] | Clark I D, Fritz P F. Environmental Isotopes in Hydrology[J]. Boca Raton Fla Lewis Publishers, 1997, 80(5):532-532. |
[43] | Hoefs J. Stable Isotope Geochemistry[M]. Springer, 1997:102-107. |
[44] | 刘家军, 何明勤, 李志明, 等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质, 2004, 23(1):1-10. doi: 10.3969/j.issn.0258-7106.2004.01.001 |
[45] |
Keller J, Hoefs J. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai[C]//Bell K, Keller J. Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. IAVCEI Proceedings in Volcanology 4. Berlin: Springer, 1995: 113-123. |
[46] | 刘建明, 刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报, 1997, (4):448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012 |
[47] | Barnes H L. Geochemistry of Hydrothermal Ore Deposits (3rd Edition)[M]. New York:John Wiley and Sons, 1997:1-972. |
[48] | Zheng Y F, Hoefs J. Carbon and oxygen isotopic covariations in hydrothermal calcites[J]. Mineralium Deposita, 1993, 28(28):79-89. |
[49] | 郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质, 2001, 20(1):57-70. doi: 10.3969/j.issn.0258-7106.2001.01.007 |
[50] | 毛景文, 赫英, 丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质, 2002, 21(2):121-128. doi: 10.3969/j.issn.0258-7106.2002.02.004 |
[51] | 刘德良, 孙先如, 李振生, 等.鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J].石油实验地质, 2006, 28(2):155-161. doi: 10.3969/j.issn.1001-6112.2006.02.012 |
[52] |
韩英.广东凡口铅锌矿床成矿机制与成矿模式[D].昆明理工大学博士学位论文, 2013: 94-103. |
[53] | 陶发祥, 洪业汤, 冷雪天.锶同位素对环境变化的指示意义[J].地球与环境, 1996, (5):45-49. |
[54] | 彭建堂, 胡瑞忠, 邓海琳, 等.湘中锡矿山锑矿床的Sr同位素地球化学[J].地球化学, 2001, 30(3):248-256. doi: 10.3321/j.issn:0379-1726.2001.03.008 |
[55] | 彭建堂, 胡瑞忠, 蒋国豪.贵州晴隆锑矿床中萤石的Sr同位素地球化学[J].高校地质学报, 2003, 9(2):244-251. doi: 10.3969/j.issn.1006-7493.2003.02.010 |
[56] | 彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪Au-Sb-W矿床中富放射成因锶的成矿流体及其指示意义[J].矿物岩石地球化学通报, 2003, 22(3):193-196. doi: 10.3969/j.issn.1007-2802.2003.03.001 |
[57] | 祁进平, 赖勇, 任康绪, 等.小秦岭金矿田成因的锶同位素约束[J].岩石学报, 2006, 22(10):2543-2550. |
[58] | 翟建平, 胡凯.乳山金矿床的成因机制:成矿流体和H, O, Sr同位素证据[J].科学通报, 1996, (12):1119-1121. doi: 10.3321/j.issn:0023-074X.1996.12.017 |
[59] | Deer W A, Howie R A, Zussman J. An introduction to the rock forming minerals[M]. Longman Group Limited, 1966:509-517. |
[60] | 余金杰.宁芜地区凹山和太山铁矿床中磷灰石Sr同位素特征及意义[J].地质论评, 2003, 49(3):272-276. doi: 10.3321/j.issn:0371-5736.2003.03.008 |
[61] | 赵斌, 赵劲松.长江中下游地区若干铁铜(金)矿床中块状及脉状钙质夕卡岩的氧锶同位素地球[J].地球化学, 1997, (5):34-53. doi: 10.3321/j.issn:0379-1726.1997.05.004 |
[62] | 王坤, 李伟, 陆进, 等.川东地区石炭系碳酸盐岩碳、氧、锶同位素特征及其成因分析[J].地球化学, 2011, (4):351-362. |
[63] | 黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报, 1997, (1):45-53. |
[64] | Veizer J. Strontium Isotopes in Seawater through Time[J]. Annual Review of Earth & Planetary Sciences, 2003, 17(1):141-167. |
[65] | 黄思静, 石和, 张萌, 等.上扬子石炭-二叠纪海相碳酸盐的锶同位素演化与全球海平面变化[J].沉积学报, 2001, 19(4):481-487. doi: 10.3969/j.issn.1000-0550.2001.04.001 |
[66] | Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314(6011):526-528. doi: 10.1038/314526a0 |
[67] | Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth & Planetary Science Letters, 1989, 92(1):11-26. |
[68] | Denison R E, Koepnick R B, Burke W H, et al. Construction of the Cambrian and Ordovician seawater, ja:math, curve[J]. Chemical Geology, 1998, 152(3/4):325-340. |
[69] | Kontak D J, Kerrich R. An isotopic (C, O, Sr) study of vein gold deposits in the Meguma Terrane, Nova Scotia; implication for source reservoirs[J]. Economic Geology, 1997, 92(2):161-180. doi: 10.2113/gsecongeo.92.2.161 |
[70] | 朱东亚, 金之钧, 胡文瑄.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J].中国科学:地球科学, 2010, (2):156-170. |
[71] | 孙晓明, 陆红峰, 马名扬.粤北凡口超大型铅锌矿热液碳酸盐矿物微量元素和C、O、Sr同位素组成及其矿床成因意义[C]//全国包裹体及地质流体学术研讨会论文摘要. 2002. |
[72] | 刘家军, 吕志成, 吴胜华, 等.南秦岭大巴山大型钡成矿带中锶同位素组成及其成因意义[J].地学前缘, 2014, 21(5):23-30. |
① | 陈思松, 魏金生, 吴乔良, 等.宁镇地区岩浆岩与内生金属矿成矿关系研究.江苏省地矿局中心实验室与南京大学, 1989. |
② | 华东有色地质矿产勘查开发院.江苏省南京市栖霞山铅锌矿接替资源勘查2012年度工作方案. 2012. |
Sketch tectonic map of central eastern China (A) and the distribution of Mesozoic magmatic rocks associated with Cu-Fe-Au deposits in the Middle-Lower Yangtze River Valley metallogenic belt (B)
Geological map of the Qixiashan deposit (A), geological plan view of Huzhuashan ore block (B) and schematic diagram of joint profile in Huzhuashan ore block (C)
Geological section of deep hole KK4603 in the Qixiashan deposit
Important geological reservoir carbon (A) and oxygen (B) isotopic characteristics
δ18OV-SMOW-δ13CV-PDB diagram of carbonate minerals from the Qixiashan deposit
Geochemical variation trends of carbon and oxygen isotopes from deep hole KK4603
Strontium isotopes composition of different sources
Variation trend of 87Sr/86Sr ratio of limestones in the Qixiashan deposit