Citation: | YUAN Zhaode, LIU Jing, WANG Wei, SHAO Yanxiu, LI Zhanfei, LI Zhigang. Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault[J]. Geological Bulletin of China, 2020, 39(2-3): 147-163. |
Long records of paleoearthquakes are essential for understanding earthquake recurrence behavior of active faults and evaluating regional seismic hazard.The Altyn Tagh fault, one of the longest strike-slip faults in the world, is a research focus among seismic geologists.The authors documented a long paleoseismic record along the Xorkoli section of central Altyn Tagh fault.Eight or probably nine earthquakes were identified based on event evidence in the forms of open fissures, folds, unconformities, and upward fault terminations, with ages of AD1598 (1491~1740), AD796 (676~926), 668 (732~590) BC, 956 (1206~716) BC, 1301 (1369~1235) BC, 2105 (2232~1987) BC, 2664 (2731~2601) BC, 2818 (2878~2742) BC and 3411 (3521~3205) BC respectively.The mean recurrence interval is 620±410 a with a coefficient of variation of 0.67, indicating that earthquake recurrence is weakly periodic.Synthesis of paleoseismic sites from the central Altyn Tagh fault indicates that not all earthquakes ruptured to the eastern end of the Xorkoli section, within the Aksay restraining bend.Given the 420 a elapsed time since the most recent event, a large surface-rupturing earthquake could occur at any time along the central section.
[1] | Molnar P, Tapponnier P.Cenozoic tectonics of Asia:effects of a continental collision[J].Science, 1975, 189(4201):419-426. |
[2] | Tapponnier P, Molnar P.Slip-line field theory and large-scale continental tectonics[J].Nature, 1976, 264(5584):319-324. |
[3] | 丁国瑜.阿尔金活断层的古地震与分段[J].第四纪研究, 1995, 15(2):97-106. |
[4] | Tapponnier P, Xu Z, Roger F, et al.Oblique stepwise rise and growth of the Tibet plateau[J].Science, 2001, 294(5547):1671-1677. |
[5] | Ritts B D, Biffi U.Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China[J].Geological Society of America Bulletin, 2000, 112(1):61-74. |
[6] | Yin A, Rumelhart P E, Butler R, et al.Tecctonic Historv of the Altyn Tagh fault in Northern Tibet Inferred from Cenozoic Sedimentation[J].Geological Society of America Bulletin, 2002, 114(10):1257-1295. |
[7] | 徐锡伟, Tapponnier P, Van Der Woerd J, 等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学(D辑), 2003, 33(10):967-974. |
[8] | Cowgill E, Gold R D, Chen X, et al.Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet[J].Geology, 2009, 37(7):647-650. |
[9] | 许志琴, 李海兵, 唐哲民, 等.大型走滑断裂对青藏高原地体构架的改造[J].岩石学报, 2011, 27(11):3157-3170. |
[10] | Wu L, Lin X, Cowgill E, et al.Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau[J].Geological Society of America Bulletin, 2019, 131(7/8):1157-1178. |
[11] | 国家地震局.阿尔金活动断裂带[M].北京:地震出版社, 1992:166-187. |
[12] | Zhang P, Molnar P, Xu X.Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J].Tectonics, 2007, 26(5):TC5010. |
[13] | He J, Vernant P, Chéry J, et al.Nailing down the slip rate of the Altyn Tagh fault[J].Geophysical Research Letters, 2013, 40(20):5382-5386. |
[14] | Li Y, Shan X, Qu C, et al.Crustal deformation of the Altyn Tagh fault based on GPS[J].Journal of Geophysical Research:Solid Earth, 2018.123(11):10309-10322. |
[15] | 徐锡伟, 谭锡, 吴国栋, 等.2008年于田Ms7.3地震地表破裂带特征及其构造属性讨论[J].地震地质, 2011, 33(2):462-471. |
[16] | 李海兵, 潘家伟, 孙志明, 等.2014年于田Ms7.3地震地表破裂特征及其发震构造[J].地质学报, 2015, 89(1):180-194. |
[17] | 张培震, 闵伟, 邓起东, 等.海原活动断裂带的古地震与强震复发规律[J].中国科学(D辑), 2003, 33(8):705-713. |
[18] | 陈杰, 陈宇坤, 丁国瑜, 等.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪研究, 2003, 23(6):629-639. |
[19] | Li H, Van der Woerd J, Tapponnier P, et al.Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake[J].Earth and Planetary Science Letters, 2005, 237(1/2):285-299. |
[20] | 闻学泽, 范军, 易桂喜, 等.川西安宁河断裂上的地震空区[J].中国科学(D辑), 2008, 38(7):797-807. |
[21] | 闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报, 1999, 21(4):411-418. |
[22] | 冉勇康, 邓起东.古地震学研究的历史, 现状和发展趋势[J].科学通报, 1999, 44(1):12-20. |
[23] | Washburn Z, Arrowsmith J R, Forman S L, et al.Late Holocene earthquake history of the central Altyn Tagh fault, China[J].Geology, 2001, 29(11):1051-1054. |
[24] | Washburn Z, Arrowsmith J R, Dupont-Nivet G, et al.Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China[J].Annals of Geophysics, 2003, 46(5):1015-1034. |
[25] | 徐锡伟, 于贵华, 陈桂华, 等.青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J].地震地质, 2007, 29(2):201-217. |
[26] | 李康, 徐锡伟, 罗浩, 等.阿尔金断裂带阿克塞段半果巴探槽揭露的古地震事件[J].地震地质, 2016, 38(3):670-679. |
[27] | Luo H, Xu X, Gao Z, et al.Spatial and temporal distribution of earthquake ruptures in the eastern segment of the Altyn Tagh fault, China[J].Journal of Asian Earth Sciences, 2019, 173:263-274. |
[28] | Harris R A, Day S M.Dynamics of fault interaction:Parallel strike-slip faults[J].Journal of Geophysical Research, 1993, 98(B3):4461-4472. |
[29] | Zhang P, Mao F, Slemmons D.Rupture terminations and size of segment boundaries from historical earthquake ruptures in the Basin and Range Province[J].Tectonophysics, 1999, 308(1):37-52. |
[30] | Zoback M L, Jachens R C, Olson J A.Abrupt along-strike change in tectonic style:San Andreas Fault zone, San Francisco Peninsula[J].Journal of Geophysical Research, 1999, 104(B5):10719-10742. |
[31] | Wesnousky S G.Predicting the endpoints of earthquake ruptures[J].Nature, 2006, 444:358-360. |
[32] | Wesnousky S G.Displacement and Geometrical Characteristics of Earthquake Surface Ruptures:Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture[J].Bulletin of the Seismological Society of America, 2008, 98(4):1609-1632. |
[33] | Washburn Z.Quaternary tectonics and earthquake geology of the Central Altyn Tagh Fault, Xinjiang, China: implications for tectonic process along the northern margin of Tibet[D].M.S.Thesis, Tempe, Arizona State University, 2001: 99-100. |
[34] | 李海兵, 杨经绥, 史仁灯, 等.阿尔金走滑断陷盆地的确定及其与山脉的关系[J].科学通报, 2002, 47(1):63-67. |
[35] | Ramsey C B, Lee S.Recent and planned developments of the program OxCal[J].Radiocarbon, 2013, 55(2/3):720-730. |
[36] | Reimer P J, Bard E, Bayliss A, et al.Int Cal13 and Marine13 radio carbon age calibration curves 0-50000 years cal BP[J].Radiocarbon, 2013, 55(4):1869-1887. |
[37] | Scharer K M, Weldon Ⅱ R J, Fumal T E, et al.Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B C:A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons[J].Bulletin of the Seismological Society of America, 2007, 97(4):1054-1093. |
[38] | Shao Y, Liu Z J, Oskin M E, et al.Paleoseismic investigation of the Aksay restraining double-bend, Altyn Tagh fault, and its implication for barrier-breaching ruptures[J].Journal of Geophysical Research:Solid Earth, 2018, 123(5):4307-4330. |
[39] | Duan B, Oglesby D D.Multicycle dynamics of nonplanar strike-slip faults[J].Journal of Geophysical Research, 2005, 110(B3):B03304. |
[40] | Elliott A J, Oskin M E, Liu-Zeng J, et al.Rupture termination at restraining bends:The last great earthquake on the Altyn Tagh Fault[J].Geophysical Research Letters, 2015, 42(7):2164-2170. |
[41] | Mériaux A S, Van der Woerd J, Tapponnier P, et al.The Pingding segment of the Altyn Tagh Fault (91°E):Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces[J].Journal of Geophysical Research:Solid Earth, 2012, 117(B9):B09406. |
[42] | Wells D L, Coppersmith K J.New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J].Bulletin of the seismological Society of America, 1994, 84(4):974-1002. |
[43] | Ellsworth W L, Matthews M V, Nadeau R M, et al.A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities[M].US Geological Survey Open-File Report, 1999:99-522. |
[44] | Matthews M V, Ellsworth W L, Reasenberg P A.A Brownian model for recurrent earthquakes[J].Bulletin of the Seismological Society of America, 2002, 92(6):2233-2250. |
Fault map of India-Asia collision zone(a), shaded-relief map of the central section of the ATF and locations of paleoseismic sites(b), the interpretation of the satellite image of the Copper Mine site(c)and satellite images of the Copper Mine site(d)
Stratigraphic column and calibration of radiocarbon samples using OxCal
Interpretation of trench walls of T1 at the Copper Mine site
Interpretation of trench walls of T2 at the Copper Mine site
Faulting evidence for event A
Faulting evidence for events B, C, D and E
Faulting evidence for event E
Faulting evidence for events F, G, H and I
Probability density function for event ages at the Copper Mine site
Histograms of event indicators
Comparison of the Copper Mine, Bitter Sea, Camel, Annanba and Mobaer rupture records