2020 Vol. 39, No. 2-3
Article Contents

YUAN Zhaode, LIU Jing, WANG Wei, SHAO Yanxiu, LI Zhanfei, LI Zhigang. Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault[J]. Geological Bulletin of China, 2020, 39(2-3): 147-163.
Citation: YUAN Zhaode, LIU Jing, WANG Wei, SHAO Yanxiu, LI Zhanfei, LI Zhigang. Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault[J]. Geological Bulletin of China, 2020, 39(2-3): 147-163.

Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault

  • Long records of paleoearthquakes are essential for understanding earthquake recurrence behavior of active faults and evaluating regional seismic hazard.The Altyn Tagh fault, one of the longest strike-slip faults in the world, is a research focus among seismic geologists.The authors documented a long paleoseismic record along the Xorkoli section of central Altyn Tagh fault.Eight or probably nine earthquakes were identified based on event evidence in the forms of open fissures, folds, unconformities, and upward fault terminations, with ages of AD1598 (1491~1740), AD796 (676~926), 668 (732~590) BC, 956 (1206~716) BC, 1301 (1369~1235) BC, 2105 (2232~1987) BC, 2664 (2731~2601) BC, 2818 (2878~2742) BC and 3411 (3521~3205) BC respectively.The mean recurrence interval is 620±410 a with a coefficient of variation of 0.67, indicating that earthquake recurrence is weakly periodic.Synthesis of paleoseismic sites from the central Altyn Tagh fault indicates that not all earthquakes ruptured to the eastern end of the Xorkoli section, within the Aksay restraining bend.Given the 420 a elapsed time since the most recent event, a large surface-rupturing earthquake could occur at any time along the central section.

  • 加载中
  • [1] Molnar P, Tapponnier P.Cenozoic tectonics of Asia:effects of a continental collision[J].Science, 1975, 189(4201):419-426.

    Google Scholar

    [2] Tapponnier P, Molnar P.Slip-line field theory and large-scale continental tectonics[J].Nature, 1976, 264(5584):319-324.

    Google Scholar

    [3] 丁国瑜.阿尔金活断层的古地震与分段[J].第四纪研究, 1995, 15(2):97-106.

    Google Scholar

    [4] Tapponnier P, Xu Z, Roger F, et al.Oblique stepwise rise and growth of the Tibet plateau[J].Science, 2001, 294(5547):1671-1677.

    Google Scholar

    [5] Ritts B D, Biffi U.Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China[J].Geological Society of America Bulletin, 2000, 112(1):61-74.

    Google Scholar

    [6] Yin A, Rumelhart P E, Butler R, et al.Tecctonic Historv of the Altyn Tagh fault in Northern Tibet Inferred from Cenozoic Sedimentation[J].Geological Society of America Bulletin, 2002, 114(10):1257-1295.

    Google Scholar

    [7] 徐锡伟, Tapponnier P, Van Der Woerd J, 等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学(D辑), 2003, 33(10):967-974.

    Google Scholar

    [8] Cowgill E, Gold R D, Chen X, et al.Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet[J].Geology, 2009, 37(7):647-650.

    Google Scholar

    [9] 许志琴, 李海兵, 唐哲民, 等.大型走滑断裂对青藏高原地体构架的改造[J].岩石学报, 2011, 27(11):3157-3170.

    Google Scholar

    [10] Wu L, Lin X, Cowgill E, et al.Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau[J].Geological Society of America Bulletin, 2019, 131(7/8):1157-1178.

    Google Scholar

    [11] 国家地震局.阿尔金活动断裂带[M].北京:地震出版社, 1992:166-187.

    Google Scholar

    [12] Zhang P, Molnar P, Xu X.Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J].Tectonics, 2007, 26(5):TC5010.

    Google Scholar

    [13] He J, Vernant P, Chéry J, et al.Nailing down the slip rate of the Altyn Tagh fault[J].Geophysical Research Letters, 2013, 40(20):5382-5386.

    Google Scholar

    [14] Li Y, Shan X, Qu C, et al.Crustal deformation of the Altyn Tagh fault based on GPS[J].Journal of Geophysical Research:Solid Earth, 2018.123(11):10309-10322.

    Google Scholar

    [15] 徐锡伟, 谭锡, 吴国栋, 等.2008年于田Ms7.3地震地表破裂带特征及其构造属性讨论[J].地震地质, 2011, 33(2):462-471.

    Google Scholar

    [16] 李海兵, 潘家伟, 孙志明, 等.2014年于田Ms7.3地震地表破裂特征及其发震构造[J].地质学报, 2015, 89(1):180-194.

    Google Scholar

    [17] 张培震, 闵伟, 邓起东, 等.海原活动断裂带的古地震与强震复发规律[J].中国科学(D辑), 2003, 33(8):705-713.

    Google Scholar

    [18] 陈杰, 陈宇坤, 丁国瑜, 等.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪研究, 2003, 23(6):629-639.

    Google Scholar

    [19] Li H, Van der Woerd J, Tapponnier P, et al.Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake[J].Earth and Planetary Science Letters, 2005, 237(1/2):285-299.

    Google Scholar

    [20] 闻学泽, 范军, 易桂喜, 等.川西安宁河断裂上的地震空区[J].中国科学(D辑), 2008, 38(7):797-807.

    Google Scholar

    [21] 闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报, 1999, 21(4):411-418.

    Google Scholar

    [22] 冉勇康, 邓起东.古地震学研究的历史, 现状和发展趋势[J].科学通报, 1999, 44(1):12-20.

    Google Scholar

    [23] Washburn Z, Arrowsmith J R, Forman S L, et al.Late Holocene earthquake history of the central Altyn Tagh fault, China[J].Geology, 2001, 29(11):1051-1054.

    Google Scholar

    [24] Washburn Z, Arrowsmith J R, Dupont-Nivet G, et al.Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China[J].Annals of Geophysics, 2003, 46(5):1015-1034.

    Google Scholar

    [25] 徐锡伟, 于贵华, 陈桂华, 等.青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J].地震地质, 2007, 29(2):201-217.

    Google Scholar

    [26] 李康, 徐锡伟, 罗浩, 等.阿尔金断裂带阿克塞段半果巴探槽揭露的古地震事件[J].地震地质, 2016, 38(3):670-679.

    Google Scholar

    [27] Luo H, Xu X, Gao Z, et al.Spatial and temporal distribution of earthquake ruptures in the eastern segment of the Altyn Tagh fault, China[J].Journal of Asian Earth Sciences, 2019, 173:263-274.

    Google Scholar

    [28] Harris R A, Day S M.Dynamics of fault interaction:Parallel strike-slip faults[J].Journal of Geophysical Research, 1993, 98(B3):4461-4472.

    Google Scholar

    [29] Zhang P, Mao F, Slemmons D.Rupture terminations and size of segment boundaries from historical earthquake ruptures in the Basin and Range Province[J].Tectonophysics, 1999, 308(1):37-52.

    Google Scholar

    [30] Zoback M L, Jachens R C, Olson J A.Abrupt along-strike change in tectonic style:San Andreas Fault zone, San Francisco Peninsula[J].Journal of Geophysical Research, 1999, 104(B5):10719-10742.

    Google Scholar

    [31] Wesnousky S G.Predicting the endpoints of earthquake ruptures[J].Nature, 2006, 444:358-360.

    Google Scholar

    [32] Wesnousky S G.Displacement and Geometrical Characteristics of Earthquake Surface Ruptures:Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture[J].Bulletin of the Seismological Society of America, 2008, 98(4):1609-1632.

    Google Scholar

    [33] Washburn Z.Quaternary tectonics and earthquake geology of the Central Altyn Tagh Fault, Xinjiang, China: implications for tectonic process along the northern margin of Tibet[D].M.S.Thesis, Tempe, Arizona State University, 2001: 99-100.

    Google Scholar

    [34] 李海兵, 杨经绥, 史仁灯, 等.阿尔金走滑断陷盆地的确定及其与山脉的关系[J].科学通报, 2002, 47(1):63-67.

    Google Scholar

    [35] Ramsey C B, Lee S.Recent and planned developments of the program OxCal[J].Radiocarbon, 2013, 55(2/3):720-730.

    Google Scholar

    [36] Reimer P J, Bard E, Bayliss A, et al.Int Cal13 and Marine13 radio carbon age calibration curves 0-50000 years cal BP[J].Radiocarbon, 2013, 55(4):1869-1887.

    Google Scholar

    [37] Scharer K M, Weldon Ⅱ R J, Fumal T E, et al.Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B C:A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons[J].Bulletin of the Seismological Society of America, 2007, 97(4):1054-1093.

    Google Scholar

    [38] Shao Y, Liu Z J, Oskin M E, et al.Paleoseismic investigation of the Aksay restraining double-bend, Altyn Tagh fault, and its implication for barrier-breaching ruptures[J].Journal of Geophysical Research:Solid Earth, 2018, 123(5):4307-4330.

    Google Scholar

    [39] Duan B, Oglesby D D.Multicycle dynamics of nonplanar strike-slip faults[J].Journal of Geophysical Research, 2005, 110(B3):B03304.

    Google Scholar

    [40] Elliott A J, Oskin M E, Liu-Zeng J, et al.Rupture termination at restraining bends:The last great earthquake on the Altyn Tagh Fault[J].Geophysical Research Letters, 2015, 42(7):2164-2170.

    Google Scholar

    [41] Mériaux A S, Van der Woerd J, Tapponnier P, et al.The Pingding segment of the Altyn Tagh Fault (91°E):Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces[J].Journal of Geophysical Research:Solid Earth, 2012, 117(B9):B09406.

    Google Scholar

    [42] Wells D L, Coppersmith K J.New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J].Bulletin of the seismological Society of America, 1994, 84(4):974-1002.

    Google Scholar

    [43] Ellsworth W L, Matthews M V, Nadeau R M, et al.A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities[M].US Geological Survey Open-File Report, 1999:99-522.

    Google Scholar

    [44] Matthews M V, Ellsworth W L, Reasenberg P A.A Brownian model for recurrent earthquakes[J].Bulletin of the Seismological Society of America, 2002, 92(6):2233-2250.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(1714) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint