2020 Vol. 39, No. 2-3
Article Contents

LIU Haiyong, ZENG Qinggao, WANG Yu, MAO Guozheng. Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet[J]. Geological Bulletin of China, 2020, 39(2-3): 164-176.
Citation: LIU Haiyong, ZENG Qinggao, WANG Yu, MAO Guozheng. Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet[J]. Geological Bulletin of China, 2020, 39(2-3): 164-176.

Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet

More Information
  • Lhaguo Tso ophiolite is one of the most complete ophiolite combinations in the Shiquanhe-Namco-Lhari suture zone in central Tibetan Plateau, and has great significance for restoring the evolution of ocean.This paper reports petrology, zircon U-Pb chronology and geochemical characteristics of the diabases and plagiogranites to confirm the genesis and tectonic setting of Lhaguo Tso ophiolites.The zircon U-Pb dating of plagiogranite yielded an age of 167.8±1.7 Ma (n=24, MSWD=0.22), which indicates that the Lhaguo Tso ophiolite was formed in Late Jurassic.Geochemically, the gabbros and the diabases are similar to the island arc rocks and E-MORB, suggesting a continental back-arc basin environment setting.

  • 加载中
  • [1] Dewey J F, Bird J M.Origin and Emplacement of the Ophiolite Suite:Appalachian Ophiolites in Newfoundland[J].Journal of Geophysical Research, 1971, 76:3179-3206.

    Google Scholar

    [2] Nicolas A.Structures of Ophiolites and Dynamics of Oceanic Lithosphere[M].Kluwer Academic Publishers, 1989.

    Google Scholar

    [3] Dilek Y, Flower M F J.Arc-trench rollback and forearc accretion:2.A model template for ophiolites in Albania, Cyprus, and Oman[J].Geological Society London Special Publications, 2003, 218:43-68.

    Google Scholar

    [4] Dilek Y, Furnes H.Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].Geological Society of America Bulletin, 2011, 123:387-411.

    Google Scholar

    [5] Lister G, Forster M.Tectonic mode switches and the nature of orogenesis[J].Lithos, 2009, 113:274-291.

    Google Scholar

    [6] Xu M, Li C, Zhang X, et al.Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology, geochemistry, and geochronology[J].International Geology Review, 2014, 56(9):1072-1096.

    Google Scholar

    [7] Zhu D C, Zhao Z D, Niu Y, et al.The origin and pre-Cenozoic evolution of the Tibetan Plateau[J].Gondwana Research, 2013, 23:1429-1454.

    Google Scholar

    [8] 西藏自治区地质调查院.1/25万改则县幅区域地质调查报告[M].北京:地质出版社, 2012.

    Google Scholar

    [9] 张玉修, 张开均, 黎兵, 等.西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究[J].科学通报, 2007, 52(1):100-106.

    Google Scholar

    [10] 樊帅权, 史仁灯, 丁林, 等.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义[J].岩石矿物学杂志, 2010, 29(5):467-478.

    Google Scholar

    [11] 西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社, 1993.

    Google Scholar

    [12] 王保弟, 许继峰, 曾庆高, 等.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报, 2007, 23(6):1521-1530.

    Google Scholar

    [13] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43.

    Google Scholar

    [14] Winchester J A, Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology, 1977, 20:325-343.

    Google Scholar

    [15] Miyashiro A.Volcanic rock series in island arcs and active continental margins[J].American Journal of Science, 1974, 274(4):321-355.

    Google Scholar

    [16] Boynton W V.Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P.Rare Earth Elements Geochemistry, Elsevier, Amsterdam, 1984: 63-114.

    Google Scholar

    [17] Sun W D, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345.

    Google Scholar

    [18] Yuan Y J, Yin Z X, Liu W L, et al.Tectonic Evolution of the Meso·Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite[J].Acta Geologica Sinica(English Edition), 2015, 89(2):369-388.

    Google Scholar

    [19] Pearce J A, Stern R J.Origin of back-arc basin magmas:Trace element and isotope perspectives, Back-arc spreading systems:Geological, Biological, Chemical, and Physical Interactions[M].Washington, DC, AGU, 2006:63-86.

    Google Scholar

    [20] Fretzdorff S, Livermore R A, Devey C W, et al.Petrogenesis of the Back-arc East Scotia Ridge, South Atlantic Ocean[J].Journal of Petrology, 2002, 43:1435-1467.

    Google Scholar

    [21] Hawkins J W.Geology of supra-subduction zones: Implications for the origin of ophiolites[C]//Dilek Y, Newcomb S.Ophiolite concept and the evolution of geological thought, 2003.

    Google Scholar

    [22] Sinton J M, Ford L L, Chappell B, et al.Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea[J].Journal of Petrology, 2003, 44:159-195.

    Google Scholar

    [23] Pearce J A, Cann J R.Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyse[J].Earth & Planetary Science Letters, 1973, 19(2):290-300.

    Google Scholar

    [24] Stolper E, Newman S.The role of water in the petrogenesis of Mariana trough magmas[J].Earth & Planetary Science Letters, 1994, 121:293-325.

    Google Scholar

    [25] Pearce J A, Peate D W.Tectonic Implications of the Composition of Volcanic ARC Magmas[J].Annual Review of Earth & Planetary Sciences, 1995, 23:251-285.

    Google Scholar

    [26] Geng H, Sun M, Yuan C, et al.Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar:Petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences, 2011, 42:854-866.

    Google Scholar

    [27] Jung C, Jung S, Hoffer E, et al.Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany[J].Journal of Petrology, 2006, 47:1637-1671.

    Google Scholar

    [28] Zhao J H, Zhou M F.Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle[J].Precambrian Research, 2007, 152:27-47.

    Google Scholar

    [29] Aldanmaz E, Pearce J A, Thirlwall M F, et al.Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J].Journal of Volcanology & Geothermal Research, 2000, 102:67-95.

    Google Scholar

    [30] Brophy J G.La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas:implications for the origin of oceanic plagiogranite[J].Contrib. Mineral. Petrol., 2009, 158:99-111.

    Google Scholar

    [31] Frey F A, Green D H, Roy S D.Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J].Journal of Petrology, 1978, 19:463-513.

    Google Scholar

    [32] Hess P C.Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M.Mantle Flow and Melt Generation at Mid-Ocean Ridges.Geophysical Monograph 71, American Geophysical Union.1992: 67-102.

    Google Scholar

    [33] Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman, 1989:1-466.

    Google Scholar

    [34] Jung S, Mesberg P.Major and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg(central Germany)Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J].Journal of Volcanology and Geothermal Research, 1998, 86:151-177.

    Google Scholar

    [35] 徐建鑫.西藏改则县拉果错蛇绿岩的构造属性[D].吉林大学博士学位论文, 2015.

    Google Scholar

    [36] Cabanis B, Lecolle M.Le diagramme La/10-Y/15-Nb/8:Un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale[J].Comptes Rendus de l'Academie des Sciences Series Ⅱ, 1989, 309:2023-2029.

    Google Scholar

    [37] Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth & Planetary Science Letters, 1982, 59(1)101-118.

    Google Scholar

    [38] Metzger E P, Miller R B, Harper G D.Geochemistry and Tectonic Setting of the Ophiolitic Ingalls Complex, North Cascades, Washington:Implications for Correlations of Jurassic Cordilleran Ophiolites[J].The Journal of Geology, 2002, 110(5):543-560.

    Google Scholar

    [39] Gribble R F, Stern R J, Bloomer S H, et al.MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J].Geochimica Et Cosmochimica Acta, 1996, 60(12):2153-2166.

    Google Scholar

    [40] Shinjo R, Chung S L, Kato Y, et al.Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc:Implications for the evolution of a young, intracontinental back arc basin[J].Journal of Geophysical Research Solid Earth, 1999, 104(B5):10591-10608.

    Google Scholar

    [41] Xu J F, Castillo P R, Chen F R, et al.Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China:implications for backarc mantle evolution[J].Chemical Geology, 2003, 193:137-154.

    Google Scholar

    [42] Ghazi J M, Moazzen M, Rahgoshay M, et al.Geochemical characteristics of basaltic rocks from the Nain ophiolite(Central Iran); constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model[J].Tectonophysics, 2012, 574/575:92-104.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(592) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint