2020 Vol. 39, No. 7
Article Contents

SI Xiaobo, FENG Yanfang, SU Shangguo, ZHANG Bo. Regional metallogenic geological background of granite-type Nb-Ta deposits in Southeast China[J]. Geological Bulletin of China, 2020, 39(7): 1085-1103.
Citation: SI Xiaobo, FENG Yanfang, SU Shangguo, ZHANG Bo. Regional metallogenic geological background of granite-type Nb-Ta deposits in Southeast China[J]. Geological Bulletin of China, 2020, 39(7): 1085-1103.

Regional metallogenic geological background of granite-type Nb-Ta deposits in Southeast China

More Information
  • In order to explore the regional metallogenic geological background of granite-type Nb-Ta deposits in southeast China and to provide geological tectonic basis for the regional mineralization regularity and resource potential evaluation of granite-type Nb-Ta deposits in southeast China, the authors collected and collated data from 15 typical granite type Nb-Ta deposits and, in combination with the deposit characteristics, metallogenic age, metallogenic rock mass and rock geochemical research analysis, concluded that the formation ages of the deposits are concentrated at 124 ~ 185 Ma, suggesting Yanshanian period.Geochemical characteristics show that the concentration of P2O5 is different in different ore-forming granites, with both high P and low P, A/CNK equal to 0.97~1.99, mostly greater than 1.1, and peraluminous characteristics; trace elements show enrichment of Rb and Nb, Ta, Th, Zr, Hf and other elements but loss of Sr, Ti, Ba; the content of rare earth elements generally shows a low trend, and Eu has a significantly negative anomaly; Zr/Hf=3.13~23.31, and Nb/Ta=0.28~7.67.In combination with the mineral characteristics, it is believed that the ore-bearing rock masses are all highly differentiated granites.From the bottom to the top of the ore-forming rock mass, except for some hidden rock masses that show the characteristics of the top zone, the ore-forming rock masses all show obvious facies belt characteristics, and the characteristic mineral mica changes more obviously, towards light-colored mica and evolution in lithium-richer direction; the ore-forming rocks are the associated or transitional combination of biotite granite, two-mica granite and muscovite granite.The mineralizing granite includes both S-type highly differentiated granite and topaz A-type granite, and topaz A-type granite.Granite and S-type granite are symbiotic and were formed by melting of the S-type granite.Combined with regional research data, the authors hold that the deposits were formed in the subduction accretive orogenic process under the background of ocean-continent convergence:westward subduction of the Paleo-Pacific plate led to the occurrence of intracontinental subduction on the southeast margin of the Yangtze Block, which resulted in the northwest margin of the intrusive (rock) arc of the southeast coast pushing over the southeast margin of the Yangtze Block, forming many "collision type" granite Nb-Ta deposits.

  • 加载中
  • [1] Ĉerný P.Rare-element granitic pegmatites Part Ⅱ:regional to global environments and petrogenesis[J].Geoscience Canada, 1991, 18(2):68-81.

    Google Scholar

    [2] Ĉerný P.Regional zoning of pegmatite populations and its interpretation[J].Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 1992, 137:99-108.

    Google Scholar

    [3] Lafleur M P J, Eng P, Ayad M A B, et al.NI 43-101 Technical Report to present the mineral resources of the rare earth elements zone Niobec Mine-IAMGOLD Corporation[J].Ste-Therese, QC, CA, 2012:1-145.

    Google Scholar

    [4] Soloviev S G, Kryazhev S, Dvurechenskaya S.Geology, igneous geochemistry, mineralization, and fluid inclusion characteristics of the Kougarok tin-tantalum-lithium prospect, Seward Peninsula, Alaska, USA[J].Mineralium Deposita, 2020, 55(1):79-106.

    Google Scholar

    [5] Küster D.Granitoid-hosted Ta mineralization in the Arabian-Nubian Shield:Ore deposit types, tectono-metallogenetic setting and petrogenetic framework[J].Ore Geology Reviews, 2008, 35(1):68-86.

    Google Scholar

    [6] 左梦璐.江西雅山与大吉山两类稀有金属花岗岩成矿差异性研究[D].中国地质大学(北京)硕士学位论文, 2016.

    Google Scholar

    [7] 邵力军.南岭及邻区花岗岩型稀有金属矿床地质成矿特征[M].北京:地质出版社, 2011.

    Google Scholar

    [8] 林德松.华南富钽花岗岩矿床[M].北京:地质出版社, 1996.

    Google Scholar

    [9] 李文辉, 钟晓清, 张苑平, 等.广东省博罗县横河钠长石矿构造岩浆演化及成矿机理[J].大地构造与成矿学, 2010, 34(1):71-77.

    Google Scholar

    [10] 文春华, 邵拥军, 黄革非, 等.湖南尖峰岭稀有金属花岗岩地球化学特征及成矿作用[J].矿床地质, 2017, 36(4):879-892.

    Google Scholar

    [11] 董业才, 丁汝福.广西栗木矿田花岗岩体地球化学特征制约因素及其动力学背景[J].矿产与地质, 2016, 30(6):998-1005.

    Google Scholar

    [12] 蔡报元, 靳鑫, 张云蛟.葛源松树岗铌钽矿分布规律及与灵山岩体的关系[J].西部探矿工程, 2017, 29(09):171-175.

    Google Scholar

    [13] 朱金初, 王汝成, 陆建军, 等.湘南癞子岭花岗岩体分异演化和成岩成矿[J].高校地质学报, 2011, 17(3):381-392.

    Google Scholar

    [14] Li H, Sun H S, Algeo T J, et al.Mesozoic multi-stage W-Sn polymetallic mineralization in the Nanling Range, South China:An example from the Dengfuxian-Xitian ore field[J].Geological Journal, 2019, 54(6):3755-3785.

    Google Scholar

    [15] Ĉerný P.Extreme fractionation in rare element granitic pegmatites selected examples of data and mechanism[J].Canadian Mineralogist, 1985, 23:381-421.

    Google Scholar

    [16] Yin L, Pollard P J, Shouxi H, et al.Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China[J].Economic Geology, 1995, 90(3):577-585.

    Google Scholar

    [17] Pollard P J.Geochemistry of Granites Associated with Tantalum and Niobium Mineralization[C]//Lanthanides, Tantalum and Niobium.Springer Berlin Heidelberg, 1989.

    Google Scholar

    [18] Cuney M, Raimbault L.Variscan rare metal granites and associated mineralizations from the North French Massif Central[C]//Field Trip Guidebook, SGA 25.Anniversary Meeting, Nancy, 1991: 30.

    Google Scholar

    [19] Cuney M, Marignac C, Weisbrod A.The Beauvoir topaz-lepidolite albitic granite (Massif Central France).A highly specialized granite with disseminated Sn-Li-Ta-Nb-Be mineralization of magmatic origin[J].Econ.Geol., 1992, 87:1766-1794.

    Google Scholar

    [20] Johan V, Johan Z.Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic Part 1:Nb-, Ta-and Ti-bearing oxides[J].Mineralogy and Petrology, 1994, 51(2/4):323-343.

    Google Scholar

    [21] Che X D, Wu F Y, Wang R C, et al.Corrigendum to "In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS" (Ore Geol.Rev.65(2015) 979-989)[J].Ore Geology Reviews, 2015, 65(4):979-989.

    Google Scholar

    [22] Linnen R L, I M Samson, A E Williams-Jones, et al.Treatise on Geochemistry||Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits[J].Earth Systems and Environmental Sciences, 2014, 13:543-568

    Google Scholar

    [23] Dill, Harald G.Pegmatites and aplites:Their genetic and applied ore geology[J].Ore Geology Reviews, 2015, 69:417-561.

    Google Scholar

    [24] Jahn B M, Chen P Y, Yen T P.Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance[J].Geological Society of America Bulletin, 1976, 87(5):763-776.

    Google Scholar

    [25] 吴利仁.华东及邻区中新生代火山岩[M].北京:科学出版社, 19984:1-287.

    Google Scholar

    [26] Sun W D, Yang X Y, Fan W M, et al.Mesozoic large scale magmatism and mineralization in South China:Preface[J].Lithos, 2012, 150:1-5.

    Google Scholar

    [27] 冯艳芳, 姚晓峰, 魏友卿, 等.长乐-南澳构造带燕山期(J-K)TTG岩石组合及其地质意义[J].岩石学报, 2014, 30(11):3315-3333.

    Google Scholar

    [28] 李兆鼐.中国东部中、新生代火成岩及其深部过程[J].地球学报, 2004, (4):436.

    Google Scholar

    [29] Wang B, Shu L, Yang Z.Study of the early-middle Jurassic tectono-stratigraphy in the Jiangxi-Fujian-Guangdong region, SE China[J].Journal of Stratigraphy, 2006, 30(1):42-49.

    Google Scholar

    [30] 张旗, 李承东.花岗岩:地球动力学意义[M].北京:海洋出版社, 2012:1-276.

    Google Scholar

    [31] 张国伟, 郭安林, 王岳军, 等.中国华南大陆构造与问题[J].中国科学:地球科学, 2013, 43(10):1553-1582.

    Google Scholar

    [32] 杨明桂, 王光辉.华南陆区板块活动与构造体系的形成演化——纪念李四光先生诞辰130周年[J].地质学报, 2019, 93(3):22-38.

    Google Scholar

    [33] 邓晋福, 冯艳芳, 狄永军, 等.华南地区侵入岩时空演化框架[J].地质论评, 2016, 62(1):3-16.

    Google Scholar

    [34] 黄定堂.江西横峰松树岗钨锡铌钽多金属矿床成因探讨[J].有色金属矿产与勘查, 1999, (4):40-45.

    Google Scholar

    [35] 孙颖超, 陈郑辉, 赵国春, 等.湖南邓阜仙钨铌钽矿花岗细晶岩接触带白云母40Ar/39Ar年龄及其地质意义[J].地质通报, 2017, 36(2/3):466-476.

    Google Scholar

    [36] 轩一撒, 袁顺达, 原垭斌, 等.湘南尖峰岭岩体锆石U-Pb年龄、地球化学特征及成因[J].矿床地质, 2014, 33(6):1379-1390.

    Google Scholar

    [37] Ying Y C, Chen W, Lu J, et al.In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China[J].Lithos, 2017, 290:159-171.

    Google Scholar

    [38] 覃宗光, 邓贵安, 董业才, 等.栗木矿田鱼菜花岗岩型锡钨矿床的发现及其找矿标志[J].云南冶金, 2011, 40(S2):76-79, 84.

    Google Scholar

    [39] 邓贵安, 吴继炜, 汪恕生, 等.栗木矿田三个黄牛花岗岩型钨锡矿床地质特征[J].矿产与地质, 2012, 26(1):1-6.

    Google Scholar

    [40] 张思明, 陈郑辉, 施光海, 等.江西省大吉山钨矿床辉钼矿铼-锇同位素定年[J].矿床地质, 2011, 30(6):1113-1121.

    Google Scholar

    [41] 何维基.江西省钽铌矿床类型及时空分布规律[J].矿产与地质, 2001, (S1):450-456.

    Google Scholar

    [42] 甘晓春, 朱金初, 沈渭洲.广西栗木水溪庙稀有金属花岗岩成因[J].地质找矿论丛, 1992, (2):35-45.

    Google Scholar

    [43] 曾晓建, 陈正钱.武夷山成矿带会仙峰花岗岩体及稀有金属成矿特征[J].矿产与地质, 2002, (3):174-178.

    Google Scholar

    [44] 李文辉, 钟晓清, 张苑平, 等.广东省博罗县横河钠长石矿构造岩浆演化及成矿机理[J].大地构造与成矿学, 2010, 34(1):71-77.

    Google Scholar

    [45] 刘家远.复式岩体和杂岩体——花岗岩类岩体组合的两种基本形式及其意义[J].地质找矿论丛, 2003, (3):143-148.

    Google Scholar

    [46] Middlemost E A K.Naming materials in the magma/igneous rock system[J].Annual Review of Earth & Planetary ences, 1994, 37(3/4):215-224.

    Google Scholar

    [47] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101(5):635-643.

    Google Scholar

    [48] 杨毅, 祝新友, 王艳丽, 等.湖南湘东钨矿区花岗岩地质地球化学特征及意义[J].矿产与地质, 2014, 28(2):202-208.

    Google Scholar

    [49] 刘昌实, 贺伯初, 周亮, 等.赣东南含黄玉花岗质岩石的成因探讨[J].大地构造与成矿学, 1993, (1):39-51.

    Google Scholar

    [50] 周红升, 苏华, 马昌前.灵山岩体的形成时代、构造背景及其A型花岗岩的厘定[J].信阳师范学院学报(自然科学版), 2009(2):222-226.

    Google Scholar

    [51] Boynton W V.Cosmochemistry of the rare earth elements: meteorite studies[C]//Developments in geochemistry.Elsevier, 1984, 2: 63-114.

    Google Scholar

    [52] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345.

    Google Scholar

    [53] Aguilar C P, González C.Petrogenesis of highly fractionated I-type peraluminous granites:La Pedriza pluton (Spanish Central System)[J].Geologica Acta, 2010, 8(2):131-149.

    Google Scholar

    [54] Ballouard C, Poujol M, Boulvais P, et al.Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J].Geology, 2016, 44:231-234.

    Google Scholar

    [55] Bau M.Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J].Contributions to Mineralogy & Petrology, 1996, 123(3):323-333.

    Google Scholar

    [56] Green T H.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J].Chemical Geology, 1995, 120(3/4):347-359.

    Google Scholar

    [57] Dostal J, Chatterjee A K.Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J].Chemical Geology, 2000, 163(1/4):207-218.

    Google Scholar

    [58] Claiborne L L, Miller C F, Walker B A, et al.Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons:An example from the Spirit Mountain batholith, Nevada[J].Mineralogical Magazine, 2006, 70(5):517-543.

    Google Scholar

    [59] Dostal J, Kontak D J, Gerel O, et al.Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia:Products of extreme magmatic fractionation and pervasive metasomatic fluid:rock interaction[J].Lithos, 2015, 236/237:173-189.

    Google Scholar

    [60] 吴福元, 刘小驰, 纪伟强, 等.高分异花岗岩的识别与研究[J].中国科学:地球科学, 2017, 47(7):745-765.

    Google Scholar

    [61] Whalen J B, Currie K L, Chappell B W.A-type granites:geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy & Petrology, 1987, 95(4):407-419.

    Google Scholar

    [62] 黑慧欣, 牛耀龄, 赵志丹, 等.一代表性矿物中Nb, Ta, Zr, Hf的丰度与分配[C]//2009年全国岩石学与地球动力学研讨会.2009.

    Google Scholar

    [63] Taylor R P.Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite-topaz granite, southern New Brunswick, and comparisons with other topaz-bearing felsic rocks[J].Canadian Mineralogist, 1992, 30(3):895-921.

    Google Scholar

    [64] Kovalenko V I.Ongonites (topaz-bearing quartz keratophyre)-subvolcanic analogue of rare-metal Li-F granites[J].Nauka Moskva, 1976, 15:124-128.

    Google Scholar

    [65] Eby G N.Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J].Geology, 1992, 20(7):641-644.

    Google Scholar

    [66] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, (6):3-24.

    Google Scholar

    [67] Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of petrology, 1984, 25(4):956-983.

    Google Scholar

    [68] 马丽芳.中国地质图集[Z].北京: 地质出版社, 2002: 1-248.

    Google Scholar

    [69] 张岳桥, 徐先兵, 贾东, 等.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J].地学前缘, 2016, (1):234-247.

    Google Scholar

    [70] 邓晋福, 冯艳芳, 狄永军, 等.中国侵入岩大地构造图(1:250万)[M].北京:地质出版社, 2016:522-528.

    Google Scholar

    [71] Pitcher W S.The Nature and Origin of Granite[M].London:Chapman & Hall Press, 1997:215-225.

    Google Scholar

    [72] Clemens J D, Holloway J R, White A J R.Origin of an A-type granite:experimental constraints[J].American Mineralogist, 1986, 71(3):317-324.

    Google Scholar

    [73] King P L, White A J R, Chappell B W, et al.Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J].Journal of Petrology, 1997, (3):3.

    Google Scholar

    [74] King P L, Chappell B W, Allen C M, et al.Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J].Journal of the Geological Society of Australia, 2001, 48(4):501-514.

    Google Scholar

    [75] Ballouard C, Massuyeau M, Elburg M A, et al.The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations[J].Earth-Science Reviews, 2020, 203:103115.

    Google Scholar

    [76] 邓晋福, 赵海玲, 莫宣学, 等.扬子大陆的陆内俯冲与大陆的缩小——由白云母(二云母)花岗岩推导[J].高校地质学报, 1995, (1):50-57.

    Google Scholar

    [77] 唐梅华.华东南内陆地区早白垩世中期挤压构造事件及其地质意义[D].东华理工大学硕士学位论文, 2016.

    Google Scholar

    [78] 顾连兴.A型花岗岩的特征、成因及成矿[J].地质科技情报, 1990, 9(1):27-33.

    Google Scholar

    [79] 陈璟元, 杨进辉.佛冈高分异Ⅰ型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约[C]//中国科学院地质与地球物理研究所2015年度(第15届)学术年会.2016.

    Google Scholar

    [80] 邓晋福.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004.

    Google Scholar

    邢光福,张允平.中国东部中新生代陆缘弧盆系大地构造图说明书.中国地质调查局发展中心,2013:1-149.

    Google Scholar

    周亮,苟月明,王取义,等.赣南石城及寻乌锡多金属隐伏矿预测研究.江西省地质矿产局赣南地质调查大队南京大学,2008.

    Google Scholar

    许建详,王淑敏,梁景时,等.江西省石城县姜坑里矿区钒但矿详查地质报告.2008:5-36.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(903) PDF downloads(16) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint