2020 Vol. 39, No. 7
Article Contents

LIU Suqing, CHEN Jianping, XU Bin, LI Shi, ZHANG Yaguang, YAO Yanjun. Intelligent extraction of area element information from colored geological map on the basis of BP neural network and mathematical morphology[J]. Geological Bulletin of China, 2020, 39(7): 1104-1114.
Citation: LIU Suqing, CHEN Jianping, XU Bin, LI Shi, ZHANG Yaguang, YAO Yanjun. Intelligent extraction of area element information from colored geological map on the basis of BP neural network and mathematical morphology[J]. Geological Bulletin of China, 2020, 39(7): 1104-1114.

Intelligent extraction of area element information from colored geological map on the basis of BP neural network and mathematical morphology

More Information
  • As an important result of regional geological research geological map not only belongs to the valuable information left by the previous researchers but also integrates the rich knowledgeof geological experts.The purpose of this study is to extract the color geological map information through new ideas, so that the results can be directly used for data analysis and used for decision-making and analysis. Guided by machine learning and based on the analysis of the characteristics of semi-structured grid geological maps this paper proposes a new idea for extracting the information of colored geological map according to the legend information and exploring the effective technology method for transforming semi-structured data into structured data in combination with mathematical morphology and multilayer feed forward neural network. Therefore the semi-structured geological map can be transformed into structured data available for metallogenic prediction and other researches with the help of image information extraction technology.This innovation will change the structure of traditional geological data and increase the information base and source for geological research therefore it is of important significance to obtain more data sources and information sources and to further carry out geological analysis and research.

  • 加载中
  • [1] 赵鹏大, 张寿庭, 陈建平.危机矿山可接替资源预测评价若干问题探讨[J].成都理工大学学报(自然科学版), 2004, 31(2):111-117.

    Google Scholar

    [2] 赵鹏大, 陈建平.非传统矿产资源体系及其关键科学问题[J].地球科学进展, 2000, 15(3):251-255.

    Google Scholar

    [3] 陈建平, 李婧, 崔宁, 等.大数据背景下地质云的构建与应用[J].地质通报, 2015, 34(7):1260-1265.

    Google Scholar

    [4] 李华蓉.基于图段的彩色地图线要素智能识别[D].武汉大学博士学位论文, 2010.

    Google Scholar

    [5] Shi L, Jianping C, Jie X.Prospecting Information Extraction by Text Mining Based on Convolutional Neural Networks - A case study of the Lala Copper Deposit, China[J].IEEE Access, 2018:1-1.

    Google Scholar

    [6] 章毓晋.图像工程(上册):图像处理和分析[M].北京:清华大学出版社, 1999.

    Google Scholar

    [7] 朱述龙, 朱宝山, 王卫红.遥感图像处理与应用[M].北京:科学出版社, 2006.

    Google Scholar

    [8] Gonzalez R C, Woods R E.Digital image processing[M].Beijing:Publishing House of Electronics Industry, 2002.

    Google Scholar

    [9] Fabijanska A, Sankowski D.Noise adaptive switching median-base filter for impulse noise removal from extremely corrupted images[J].Image Processing, 2011, 5(5):472-480.

    Google Scholar

    [10] 苟中魁, 张少军, 李忠富, 等.一种基于极值的自适应中值滤波算法[J].红外与激光, 2005, 34(1):98-101.

    Google Scholar

    [11] 陈盛双, 陆昊娟, 李亮, 等.彩色图像去噪方法的研究[J].武汉理工大学学报(信息与管理工程版), 2001, 32(1):10-12.

    Google Scholar

    [12] 盛宜韬.地形图矢量化设计及在三维重建中的应用[D].华南理工大学硕士学位论文, 2010.

    Google Scholar

    [13] 卢敏.土地利用基础图件矢量化关键技术研究[D].华中科技大学硕士学位论文, 2007.

    Google Scholar

    [14] Huttonlocher D P, Klanderman G A, Ruchlidge W J.Cmparing Image using the Hausdorff distance.IEEE Tran[J].Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863.

    Google Scholar

    [15] Serra J.Image analysis and mathematical morphology[M].London:Academic Press, 1982.

    Google Scholar

    [16] 董保根.遥感影像上目标提取的数学形态学方法研究[D].解放军信息工程大学硕士学位论文, 2005.

    Google Scholar

    [17] 熊联欢, 胡汉平, 李德华, 等.用BP网络进行彩色图像分割和边缘检测[J].华中理工大学学报, 1999, 27(2):87-89.

    Google Scholar

    [18] 杨治明, 王晓蓉, 彭军, 等.BP人工神经网络在图像分割中的应用[J].计算机科学, 2007, 34(3):234-236.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(635) PDF downloads(10) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint