2021 Vol. 40, No. 1
Article Contents

XIANG Zhongjin, YAN Quanren, XIA Lei, XIA Wenjing. The tectonic setting of the Early-Middle Triassic volcanic-sedimentary succession in Funing-Napo area, the south margin of Nanpanjiang Basin, South China[J]. Geological Bulletin of China, 2021, 40(1): 138-151.
Citation: XIANG Zhongjin, YAN Quanren, XIA Lei, XIA Wenjing. The tectonic setting of the Early-Middle Triassic volcanic-sedimentary succession in Funing-Napo area, the south margin of Nanpanjiang Basin, South China[J]. Geological Bulletin of China, 2021, 40(1): 138-151.

The tectonic setting of the Early-Middle Triassic volcanic-sedimentary succession in Funing-Napo area, the south margin of Nanpanjiang Basin, South China

  • The Late Paleozoic to Early Mesozoic tectonic evolution process along the Sino-Vietnam border, particularly the subduction polarity of the Late Paleozoic ocean basin, is still controversial.Massive Early—Middle Triassic magmatic rocks and thick Triassic siliciclastic system occurred in the south margin of Nanpanjiang Basin provide important magmatic and sedimentary evidences for settling dispute.The Funing-Napo Triassic volcanic rocks, as the largest magmatic outcrop, are the ideal object for studying the tectonic evolution along the Sino-Vietnam border.The systematic profile survey and geological mapping indicates that the volcanic-sedimentary succession that consists of lower basaltic andesites overlain by carbonate conglomerates, pebbly sandstones and calcareous sandstones, which is similar to the volcanic-sedimentary sequence in island arc setting.Zircon SHRIMP U-Pb dating results of basaltic andesites are 247±1 Ma and 246±3 Ma, which are consist with field occurrence that basaltic andesite is overlain by Middle Triassic clastic rocsk.Combined with previous results, it is determined that the volcanic rocks were formed at 247~242 Ma.The geochemical analysis shows that basaltic andesites are enriched in LILEs (Rb, Th and U) and LREE, with a remarkable negative Nb-Ta and Ti anomalies.Both the geochemical characteristics of basaltic andesites and the volcanic-sedimentary sequence suggest that the Early—Middle Triassic volcanic-sedimentary succession was formed in a subduction-related arc setting.The spatial and temporal distribution characteristics of Early-Middle Triassic volcanic arc and ophiolitic mélange, implies that a north-dipping subduction occurred along Sino-Vietnam border.

  • 加载中
  • [1] Sone M, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340(2): 166-179.

    Google Scholar

    [2] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [3] Cai J, Zhang K. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 2009, 467(1): 35-43.

    Google Scholar

    [4] Faure M, Lepvrier C, Nguyen V V, et al. The South China block-Indochina collision: Where, when, and how?[J]. Journal of Asian Earth Sciences, 2014, 79: 260-274. doi: 10.1016/j.jseaes.2013.09.022

    CrossRef Google Scholar

    [5] Jian P, Liu D, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(Ⅰ): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks[J]. Lithos, 2009, 113(3/4): 748-766.

    Google Scholar

    [6] Jian P, Liu D, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(Ⅱ): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009, 113(3/4): 767-784.

    Google Scholar

    [7] Lai C, Meffre S, Crawford A J, et al. The Central Ailaoshan ophiolite and modern analogs[J]. Gondwana research, 2014, 26(1): 75-88. doi: 10.1016/j.gr.2013.03.004

    CrossRef Google Scholar

    [8] Findlay R H, Trinh P T. The Structural Setting of the Song Ma Region, Vietnam and the Indochina-South China Plate Boundary Problem[J]. Gondwana Research, 1997, 1(1): 11-33. doi: 10.1016/S1342-937X(05)70003-4

    CrossRef Google Scholar

    [9] Liu J, Tran M, Tang Y, et al. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications[J]. Gondwana Research, 2012, 22(2): 628-644. doi: 10.1016/j.gr.2011.10.011

    CrossRef Google Scholar

    [10] Zhang R Y, Lo C H, Chung S L, et al. Origin and tectonic implication of Ophiolite and Eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks[J]. Journal of Metamorphic Geology, 2013, 31: 49-62. doi: 10.1111/jmg.12012

    CrossRef Google Scholar

    [11] 锺大赉, 吴根耀, 季建清, 等. 滇东南发现蛇绿岩[J]. 科学通报, 1998, (13): 1365-1370.

    Google Scholar

    [12] Genyao W, Dalai Z, Qi Z, et al. Babu-Phu Ngu Ophiolites: A Geological Record of Paleotethyan Ocean Bordering China and Vietnam[J]. Gondwana Research, 1999, 2(4): 554-557. doi: 10.1016/S1342-937X(05)70193-3

    CrossRef Google Scholar

    [13] 王忠诚, 吴浩若, 邝国敦. 桂西晚古生代海相玄武岩的特征及其形成环境[J]. 岩石学报, 1997, (2): 135-140.

    Google Scholar

    [14] Guo F, Fan W, Wang Y, et al. Upper Paleozoic Basalts in the Southern Yangtze Block: Geochemical and Sr-Nd Isotopic Evidence for Asthenosphere-Lithosphere Interaction and Opening of the Paleo-Tethyan Ocean[J]. International Geology Review, 2004, 46(4): 332-346. doi: 10.2747/0020-6814.46.4.332

    CrossRef Google Scholar

    [15] 董云鹏, 朱炳泉. 滇东南建水岛弧型枕状熔岩及其对华南古特提斯的制约[J]. 科学通报, 1999, (21): 2323-2328. doi: 10.3321/j.issn:0023-074X.1999.21.018

    CrossRef Google Scholar

    [16] 吴根耀, 吴浩若, 钟大赉, 等. 滇桂交界处古特提斯的洋岛和岛弧火山岩[J]. 现代地质, 2000, (4): 393-400. doi: 10.3969/j.issn.1000-8527.2000.04.002

    CrossRef Google Scholar

    [17] 吴根耀, 季建清, 何顺东, 等. 广西凭祥地区早二叠世的岩浆弧及其构造意义[J]. 矿物岩石, 2002, (3): 61-65. doi: 10.3969/j.issn.1001-6872.2002.03.014

    CrossRef Google Scholar

    [18] 吴浩若. 晚古生代-三叠纪南盘江海的构造古地理问题[J]. 古地理学报, 2003, 5(1): 63-76. doi: 10.3969/j.issn.1671-1505.2003.01.006

    CrossRef Google Scholar

    [19] Lepvrier C, Faure M, Van V N, et al. North-directed Triassic nappes in Northeastern Vietnam(East Bac Bo)[J]. Journal of Asian Earth Sciences, 2011, 41(1): 56-68. doi: 10.1016/j.jseaes.2011.01.002

    CrossRef Google Scholar

    [20] 张斌辉, 丁俊, 张林奎, 等. 滇东南八布蛇绿岩的SHRIMP锆石U-Pb年代学研究[J]. 地质学报, 2013, 87(10): 1498-1509.

    Google Scholar

    [21] Liu H C, Peng T, Guo X. Geochronological and geochemical constraints on the coexistent N-MORB and SSZ-type ophiolites in Babu area(SW China)and tectonic implications[J]. Journal of the Geological Society, 2018, 175: 667-678. doi: 10.1144/jgs2017-121

    CrossRef Google Scholar

    [22] 黄虎, 杜远生, 黄志强, 等. 桂西晚古生代硅质岩地球化学特征及其对右江盆地构造演化的启示[J]. 中国科学: 地球科学, 2013, 43(02): 304-316.

    Google Scholar

    [23] Halpin A J, Thanh T H, Chun-Kit L, et al. U-Pb zircon geochronology and geochemistry from NE Vietnam: A tectonically disputed territory between the Indochina and South China blocks[J]. Gondwana Research, 2016, 34: 254-273. doi: 10.1016/j.gr.2015.04.005

    CrossRef Google Scholar

    [24] Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 1-19. doi: 10.1007/s00410-005-0030-y

    CrossRef Google Scholar

    [25] Huang H, Du Y, Yang J, et al. Origin of Permian basalts and clastic rocks in Napo, Southwest China: Implications for the erosion and eruption of the Emeishan large igneous province[J]. Lithos, 2014, 208/209: 324-338. doi: 10.1016/j.lithos.2014.09.022

    CrossRef Google Scholar

    [26] 陈雪峰, 刘希军, 许继峰, 等. 桂西那坡基性岩地球化学: 峨眉山地幔柱与古特提斯俯冲相互作用的证据[J]. 大地构造与成矿学, 2016, 40(3): 531-548.

    Google Scholar

    [27] 胡丽沙, 杜远生, 杨江海, 等. 广西那龙地区中三叠世火山岩地球化学特征及构造意义[J]. 地质论评, 2012, 58(3): 481-494. doi: 10.3969/j.issn.0371-5736.2012.03.009

    CrossRef Google Scholar

    [28] 江文, 向忠金, 夏文静, 等. 滇东南富宁地区基性侵入岩与峨眉山地幔柱存在成因关系吗?——来自1:5万洞波幅和皈朝幅地质填图的证据[J]. 岩石学报, 2017, 33(10): 3109-3122.

    Google Scholar

    [29] 皮桥辉, 胡瑞忠, 彭科强, 等. 云南富宁者桑金矿床与基性岩年代测定——兼论滇黔桂地区卡林型金矿成矿构造背景[J]. 岩石学报, 2016, 32(11): 3331-3342.

    Google Scholar

    [30] 夏磊, 闫全人, 向忠金, 等. 广西那坡盆地火山岩-碳酸盐岩混杂型滑塌堆积: 特殊的弧前域构造指相标志及其大地构造意义[J]. 岩石学报, 2018, 34(3): 685-700.

    Google Scholar

    [31] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171

    CrossRef Google Scholar

    [32] Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chemical Geology, 2004, 205(1/2): 115-140.

    Google Scholar

    [33] Williams I S, Buick I S, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia[J]. Journal of Metamorphic Geology, 1996, 14(1): 29-47.

    Google Scholar

    [34] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343.

    Google Scholar

    [35] Le Maitre R W, Bateman P, Dudek A, et al. A Classification and Glossary of Terms[M]. Blackwell, Oxford, 1989: 1-193.

    Google Scholar

    [36] Sun S S, Mcdonough M F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42: 313-345.

    Google Scholar

    [37] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: new constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1): 33-45.

    Google Scholar

    [38] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.

    Google Scholar

    [39] Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429.

    Google Scholar

    [40] Falloon T J, Green D H, Hatton C J, et al. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kbar and application to basalt petrogenesis[J]. Journal of Petrology, 1988, 29(6): 1257-1282.

    Google Scholar

    [41] Hirose K, Kushiro I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond[J]. Earth and Planetary Science Letters, 1993, 114(4): 477-489.

    Google Scholar

    [42] Xiao L, Xu Y G, Mei H J, et al. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction[J]. Earth and Planetary Science Letters, 2004, 228(3/4): 525-546.

    Google Scholar

    [43] Hirose K. Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts[J]. Geology, 1997, 25(1): 42-44.

    Google Scholar

    [44] Wu F, Walker R J, Yang Y, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 5013-5034.

    Google Scholar

    [45] Kepezhinskas P, Mcdermott F, Defant M J, et al. Trace element and Sr+Nd+Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis[J]. Geochimica et Cosmochimica acta, 1997, 61(3): 577-600.

    Google Scholar

    [46] Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth and Planetary Science Letters, 2001, 192(3): 331-346.

    Google Scholar

    [47] Hanyu T, Tatsumi Y, Nakai S, et al. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): 1-29.

    Google Scholar

    [48] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesites.London: John Wiley & Sons, 1982: 525-548.

    Google Scholar

    [49] Xia L. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195-212.

    Google Scholar

    [50] Watkins R. Volcaniclastic and carbonate sedimentation in late Paleozoic island-arc deposits, Eastern Klamath Mountains, California[J]. Geology, 1985, 13: 709-713.

    Google Scholar

    [51] Soja C. Island-arc carbonates: characterization and recognition in the ancient geologic record[J]. Earth-science reviews, 1996, 41(1/2): 31-65.

    Google Scholar

    [52] Dorobek S. Carbonate-platform facies in volcanic-arc settings: Characteristics and controls on deposition and stratigraphic development[J]. The Geological Socienty of America Special Paper, 2007, 436: 1-36.

    Google Scholar

    [53] Hoa T T, Izokh A E, Polyakov G V, et al. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume[J]. Russian Geology and Geophysics, 2008, 49(7): 480-491.

    Google Scholar

    [54] Qin X F, Wang Z Q, Zhang Y L, et al. Geochemistry of Permian mafic igneous rocks from the Napo-Qinzhou Tectonic Belt in Southwest Guangxi, Southwest China: Implications for Arc-back arc basin magmatic evolution[J]. Acta Geologica Sinica, 2012, 86(5): 1182-1199.

    Google Scholar

    [55] 吴根耀, 马力, 钟大赉, 等. 滇桂交界区印支期增生弧型造山带: 兼论与造山作用耦合的盆地演化[J]. 石油实验地质, 2001(1): 8-18.

    Google Scholar

    [56] 陈泽超, 林伟, Michel F, 等. 越南东北部早中生代构造事件的年代学约束[J]. 岩石学报, 2013, 29(5): 1825-1840.

    Google Scholar

    [57] 杜远生, 黄虎, 杨江海, 等. 晚古生代-中三叠世右江盆地的格局和转换[J]. 地质论评, 2013, 59(1): 1-11.

    Google Scholar

    [58] 覃小锋, 王宗起, 张英利, 等. 桂西南早中生代酸性火山岩年代学和地球化学: 对钦-杭结合带西南段构造演化的约束[J]. 岩石学报, 2011, 27(3): 794-808.

    Google Scholar

    [59] Condie K C. Plate tectonics and crustal evolution[M]. Pregrmon Press, Oxford, 1997.

    Google Scholar

    [60] 云南省地质矿产局. 云南省区域地质志[M]. 北京: 地质出版社, 1990.

    Google Scholar

    [61] 杨江海, 杜远生, 于鑫, 等. 滇东南八布早二叠世含火山岩屑砂岩指示古特提斯洋俯冲[J]. 地球科学, 2017, 42(1): 24-34.

    Google Scholar

    Geology and Earth Resource of Viet Nam. Geological map of VietNam (1:3500000). Publishing House for Science and Tectnology, HaNoi, 2011.

    Google Scholar

    中国地质调查局武汉地质调查中心. 1:1000000中南地质图. 2012.

    Google Scholar

    云南省地质局. 1:20万富宁幅地质图及区域地质调查报告. 1978.

    Google Scholar

    广西壮族自治区地质局. 1:20万百色幅, 德隆幅地质图及区域地质调查报告. 1976.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(2595) PDF downloads(15) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint