2021 Vol. 40, No. 1
Article Contents

YUAN Xinchen, YANG Qijun, LYU Yong, PAN Ming, GAO Aiyang, XU Fang. Response of magmatic activity to the closure of Changning-Menglian Palaeothys in western Yunnan: Evidence from geo-geochemical study on granite in southern section of Lincang pluton[J]. Geological Bulletin of China, 2021, 40(1): 125-137.
Citation: YUAN Xinchen, YANG Qijun, LYU Yong, PAN Ming, GAO Aiyang, XU Fang. Response of magmatic activity to the closure of Changning-Menglian Palaeothys in western Yunnan: Evidence from geo-geochemical study on granite in southern section of Lincang pluton[J]. Geological Bulletin of China, 2021, 40(1): 125-137.

Response of magmatic activity to the closure of Changning-Menglian Palaeothys in western Yunnan: Evidence from geo-geochemical study on granite in southern section of Lincang pluton

More Information
  • Lincang intrusive, as the largest exposed compound batholith of southern Lancangjiang in western Yunnan, and an important component of tethys tectonic domain, is mainly biotite monzogranite in lithology.The zircon sample collected frome granite was dated to 225.1±6.1 Ma, suggesting that these intrusives were emplaced during the Late Triassic.The K2O/Na2O value of Lincang granite is greater than 1, and the aluminum saturation index A/CNK ranges from1.05 to 1.95, indicating that Lancang intursives are derived from S-type granite with high potassium calcium basic peraluminum-super peraluminum.Intursives are remarkably characterized by enriched LREE and depleted HREE with (La/Yb)N=6.06~21.01 and δEu of 0.20~0.38.The petro-geochemistry of intusives indicates that the Lincang granite should be the product of the Changning-Menglian Palaeothys closure process, and the original rock of Lincang granite is lithologically clay-poor metamorphic sandstone and metamorphic mudstone in the middle and lower crust.The syncollision represented in its Pearce structure discrimination diagram is a response to the Palaeothys ocean closure and the Baoshan-Simao block collision.

  • 加载中
  • [1] 王舫, 刘福来, 刘平华, 等. 澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义[J]. 岩石学报, 2014, 30(10): 3034-3050.

    Google Scholar

    [2] 彭头平. 澜沧江南带三叠纪碰撞后岩浆作用、岩石成因及其构造意义[D]. 中国科学院研究生院(广州地球化学研究所)博士学位论文, 2006.

    Google Scholar

    [3] 廖世勇, 尹福光, 王冬兵, 等. 滇西"三江"地区临沧花岗岩基中三叠世碱长花岗岩的发现及其意义[J]. 岩石矿物学杂志, 2014, 33(1): 1-12. doi: 10.3969/j.issn.1000-6524.2014.01.001

    CrossRef Google Scholar

    [4] 刘昌实, 朱金初, 徐夕生, 等. 滇西临沧复式岩基特征研究[J]. 云南地质, 1989, (Z1): 189-204.

    Google Scholar

    [5] 李兴林. 临沧复式花岗岩基的基本特征及形成构造环境的研究[J]. 云南地质, 1996, (1): 1-18.

    Google Scholar

    [6] 朱勤文, 莫宣学, 张双全. 南澜沧江古特提斯演化的岩浆岩证据[J]. 特提斯地质, 1999, (23): 16-30.

    Google Scholar

    [7] 范蔚茗, 彭头平, 王岳军. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录[J]. 地学前缘, 2009, 16(6): 291-302. doi: 10.3321/j.issn:1005-2321.2009.06.031

    CrossRef Google Scholar

    [8] 刘德利, 刘继顺, 张彩华, 等. 滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境[J]. 岩石矿物学杂志, 2008, (1): 23-31. doi: 10.3969/j.issn.1000-6524.2008.01.003

    CrossRef Google Scholar

    [9] 孔会磊, 董国臣, 莫宣学, 等. 滇西三江地区临沧花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 岩石学报, 2012, 28(5): 1438-1452.

    Google Scholar

    [10] 黄汲清, 陈炳蔚. 中国及邻区特提斯海的演化[M]. 北京: 地质出版社, 1987: 1-187.

    Google Scholar

    [11] 赖绍聪, 秦江锋, 李学军, 等. 昌宁-孟连缝合带乌木龙-铜厂街洋岛型火山岩地球化学特征及其大地构造意义[J]. 地学前缘, 2010, 17(3): 44-52.

    Google Scholar

    [12] 王义昭. 滇西昌宁-孟连带南部孟连-曼信地区晚古生代地层若干问题[J]. 地质论评, 2005, (1): 1-9. doi: 10.3321/j.issn:0371-5736.2005.01.001

    CrossRef Google Scholar

    [13] 刘本培, 冯庆来, Chonglakmani C, 等. 滇西古特提斯多岛洋的结构及其南北延伸[J]. 地学前缘, 2002, (3): 161-171. doi: 10.3321/j.issn:1005-2321.2002.03.020

    CrossRef Google Scholar

    [14] 张凡, 冯庆来, 段向东, 等. 滇西南昌宁-孟连构造带西带研究初探——以耿马弄巴剖面为例[J]. 地质科技情报, 2006, (3): 13-20. doi: 10.3969/j.issn.1000-7849.2006.03.003

    CrossRef Google Scholar

    [15] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-13. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [16] Nianqiao F, Benpei L, Qinglai F, et al. Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang belts, southwestern Yunnan[J]. Journal of Southeast Asian Earth Sciences, 1994, 9(4): 363-374. doi: 10.1016/0743-9547(94)90048-5

    CrossRef Google Scholar

    [17] Wu H, Boulter C A, Ke B, et al. The Changning-Menglian suture zone; a segment of the major Cathaysian-Gondwana divide in Southeast Asia[J]. Tectonophysics, 1995, 242(3/4): 267-280.

    Google Scholar

    [18] 钟大赉, 等. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998: 1-231.

    Google Scholar

    [19] 彭头平, 王岳军, 范蔚茗, 等. 澜沧江南段早中生代酸性火成岩SHRIMP锆石U-PB定年及构造意义[J]. 中国科学(D辑), 2006, (2): 123-132.

    Google Scholar

    [20] Zhang R Y, Cong B L, Maruyama S, et al. Metamorphism and tectonic evolution of the Lancang paired metamorphic belts, south-western China. [J]. Journal of Metamorphic Geology, 1993, 11(4): 605-619. doi: 10.1111/j.1525-1314.1993.tb00175.x

    CrossRef Google Scholar

    [21] 刘俊来, 宋志杰, 曹淑云, 等. 印度-欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程——以藏东三江地区构造演化为例[J]. 岩石学报, 2006, (4): 775-786.

    Google Scholar

    [22] Taylor S R, Mclennan S M. The Geochemical Evolution of the Continental-Crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [23] 卫管一, 冯国荣, 罗再文, 等. 滇西澜沧群、崇山群地层层序及其火山作用和变质作用[J]. 成都地质学院学报, 1984, (2): 12-20.

    Google Scholar

    [24] 李朋武, 高锐, 崔军文, 等. 西藏和云南三江地区特提斯洋盆演化历史的古地磁分析[J]. 地球学报, 2005, (5): 3-20.

    Google Scholar

    [25] Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [26] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2009, (1/2): 34-43.

    Google Scholar

    [27] Ludwig K R. Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley CA: Berkeley Geochronology Center Special Publication, 2012, 5: 1-75.

    Google Scholar

    [28] Thornton C, Tuttle O. Chemistry of igneous rocks, part1: Differentiation index. America[J]. Journal of Science, 1960, 280: 664-684.

    Google Scholar

    [29] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins.Geological Society Special Publication, 1989, 42: 313-345.

    Google Scholar

    [30] 刘振声, 王洁民. 川藏花岗岩的稀土元素地球化学特征[C]//青藏高原地质文集. 成都: 四川科技出版社, 1990: 99-117.

    Google Scholar

    [31] 王德滋, 刘昌实, 沈渭洲, 等. 桐庐Ⅰ型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, (1): 44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005

    CrossRef Google Scholar

    [32] 陈小明, 王汝成, 刘昌实, 等. 广东从化佛冈(主体)黑云母花岗岩定年和成因[J]. 高校地质学报, 2002, (3): 293-307. doi: 10.3969/j.issn.1006-7493.2002.03.006

    CrossRef Google Scholar

    [33] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithosphere, 1998, (1/4): 29-44.

    Google Scholar

    [34] Jung S, Pfänder J A. Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy, 2007, 19(6): 859-870. doi: 10.1127/0935-1221/2007/0019-1774

    CrossRef Google Scholar

    [35] Petford N, Cruden A R, Mccaffrey K J W, et al. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 2000, 408(6813): 669-673. doi: 10.1038/35047000

    CrossRef Google Scholar

    [36] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence(Article)[J]. Earth-Science Reviews, 2003, (1/2): 1-18.

    Google Scholar

    [37] 杨启军, 徐义刚, 黄小龙, 等. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义[J]. 岩石学报, 2009, 25(5): 1092-1104.

    Google Scholar

    [38] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, (4): 956-983.

    Google Scholar

    [39] 吴彦旺. 龙木错-双湖-澜沧江洋历史记录[D]. 吉林大学博士学位论文, 2013.

    Google Scholar

    [40] 沈上越, 冯庆来, 刘本培, 等. 昌宁-孟连带洋脊、洋岛型火山岩研究[J]. 地质科技情报, 2002, (3): 13-17. doi: 10.3969/j.issn.1000-7849.2002.03.003

    CrossRef Google Scholar

    [41] 朱勤文, 张双全, 谭劲. 确定南澜沧江缝合带的火山岩地球化学证据[J]. 岩石矿物学杂志, 1998, (4): 3-5.

    Google Scholar

    [42] 吴随录. 三江地区南澜沧江临沧花岗岩的特点、时代及区域构造意义[D]. 中国地质大学(北京)硕士学位论文, 2010.

    Google Scholar

    [43] England P C, Thompson A B. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust[J]. Journal of Petrology, 1984, 25(4): 894-928. doi: 10.1093/petrology/25.4.894

    CrossRef Google Scholar

    [44] 帅开业. 兰坪-思茅中、新生代盆地成因新解[J]. 地学前缘, 2000, 7(4): 380. doi: 10.3321/j.issn:1005-2321.2000.04.033

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(1751) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint