Citation: | HUANG Yongjin, TAO Chunhui, LIANG Jin, LIAO Shili, YANG Weifang. Geochemistry and provenance of the sediment core from the rift valley of the Southwest Indian Ridge(49.58°E)[J]. Geological Bulletin of China, 2021, 40(2-3): 320-329. |
The current research on the sediments of the Southwest Indian Ridge(SWIR) mainly focuses on the surface sediments of the flank of the ridge, but lack of research on its ridge axis restricts the in-depth understanding of the sediment sources and sedimentary environment in this area.Based on the major element, trace element, REE and Y assay of a sediment core(GC03) collected from SWIR 49.58°E during Chinese DY-49 Cruise, the material source and sedimentary environment of the sediments in the study area were discussed.The results show that the bulk samples are enriched in CaO, LOI and Sr, indicating that calcareous biodeposition is dominant and mixed with basalt debris.The content of the ΣREY is low, with average value of 54.3×10-6, and the chondrite-nomalized REY distribution patterns show the enrichment of LREE compared to HREE and significant negative Ce and Eu anomaly.The enrichment of metal elements such as Cu、Zn、Fe and Co, and low 100*Al/(Al+Fe+Mn)value characterizing samples from Layer L2(83-87 cmbsf)reveals the presence of a hydrothermal component input.The Ceanom value and V/(V+Ni)-U/Th discriminant diagram indicate that the study area is generally a stable oxidized environment except for reduction characteristics exhibited from partial samples.
[1] | Yu Z, Li H, Li M, et al. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean[J]. Journal of Marine Systems, 2016, 180: 173-181. |
[2] | Agarwal D K, Roy P, Prakash L S, et al. Hydrothermal signatures in sediments from eastern Southwest Indian ridge 63°E to 68°E[J]. Marine Chemistry, 2020, 218: 1-16. |
[3] | Mitchell N C. Creep in pelagic sediments and potential for morphologic dating of marine fault scarps[J]. Geophysical Research Letters, 1996, 23(5): 483-486. doi: 10.1029/96GL00421 |
[4] | 黄大松, 张霄宇, 张国堙, 等. 西南印度洋中脊48.6°~51.7°E沉积物地球化学特征[J]. 地质科技情报, 2016, 35(1): 22-29. |
[5] | Gurvich E G. Metalliferous sediments of the world ocean: Fundamental theory of deep-sea hydrothermal sedimentation[M]. Berlin, New York: Springer, 2006: 80-120. |
[6] | Cave R R, German C R, Thomson J. Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14'N on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2002, 66(11): 1905-1923. doi: 10.1016/S0016-7037(02)00823-2 |
[7] | Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1 |
[8] | Tao C, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40(1): 47-50. doi: 10.1130/G32389.1 |
[9] | Dias Á S, Barriga F J A S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34'N; 33°26'W) at MAR[J]. Marine Geology, 2006, 225(1/4): 157-175. |
[10] | Dick H J B, Lin J, Hans S. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405-412. doi: 10.1038/nature02128 |
[11] | 陈圆圆, 于炳松, 苏新, 等. 西南印度洋中脊钙质沉积物地球化学及矿物学特征[J]. 地质科技情报, 2013, 32(1): 107-113. |
[12] | 张霄宇, 陶春辉, 廖时理, 等. 西南印度洋洋中脊表层沉积物地球化学特征及其热液活动指示[J]. 沉积学报, 2020, (4): 727-736. |
[13] | Liao S, Tao C, Li H, et al. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge[J]. Marine Geology, 2018, 398: 22-34. doi: 10.1016/j.margeo.2017.12.005 |
[14] | Liao S, Tao C, Dias Á A, et al. Surface sediment composition and distribution of hydrothermal derived elements at the Duanqiao-1 hydrothermal field, Southwest Indian Ridge[J]. Marine Geology, 2019, 416: 1-11. |
[15] | 宋备, 苏新, 吕士辉, 等. 西南印度洋中脊活动与非活动热液区沉积物元素地球化学特征对比[J]. 现代地质, 2020, 34(1): 130-140. |
[16] | 刘明, 孙晓霞, 石学法, 等. 印度洋钙质软泥和硅质软泥稀土元素组成和富集机制[J]. 海洋学报, 2019, 41(1): 58-71. |
[17] | 林震, 于洪军, 徐兴永, 等. 西南印度洋中脊扩张轴部(34.9°S)西翼沉积物地球化学分析及物源探讨[J]. 海洋地质与第四纪地质, 2018, 38(5): 14-29. |
[18] | Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283-300. |
[19] | Tao C, Seyfried W E, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge[J]. Nature Communications, 2020, 11(1): 1300. doi: 10.1038/s41467-020-15062-w |
[20] | Chen J, Tao C, Liang J, et al. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63 E[J]. Acta Oceanologica Sinica, 2018, 37(11): 61-67. doi: 10.1007/s13131-018-1333-y |
[21] | Li H, Tao C, Yue X, et al. Enhanced hydrothermal activity on an ultraslow-spreading supersegment with a seismically detected melting anomaly[J]. Marine Geology, 2020, 430: 1-12. |
[22] | Kolla V, Bé A W H, Biscaye P E. Calcium carbonate distribution in the surface sediments of the Indian Ocean[J]. Journal of Geophysical Research, 1976, 81(15): 2605-2616. doi: 10.1029/JC081i015p02605 |
[23] | 于淼, 苏新, 陶春辉, 等. 西南印度洋中脊49.6°E和50.5°E区玄武岩岩石学及元素地球化学特征[J]. 现代地质, 2013, 27(3): 497-508. doi: 10.3969/j.issn.1000-8527.2013.03.001 |
[24] | Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific, 1985: 1-312. |
[25] | 朱赖民, 高志友, 尹观, 等. 南海表层沉积物的稀土和微量元素的丰度及其空间变化[J]. 岩石学报, 2007, 23(11): 2963-2980. doi: 10.3969/j.issn.1000-0569.2007.11.027 |
[26] | Dymond J. Geochemistry of Nazca plate surface sediments: An evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources[J]. Geological Society of America, 1981, 154(154): 133-174. |
[27] | Pietrek H. Saharan dust transport over the North Atlantic Ocean[J]. Geological Society of America, 1981, 186: 87. |
[28] | McCave I N, Kiefer T, Thornalley D J R, et al. Deep flow in the Madagascar-Mascarene Basin over the last 150, 000 years[J]. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2005, 363(1826): 81-99. |
[29] | Kuhn T, Burger H, Castradori D, et al. Volcanic and hydrothermal history of ridge segments near the Rodrigues Triple Junction (Central Indian Ocean) deduced from sediment geochemistry[J]. Marine Geology, 2000, 169(3/4): 391-409. |
[30] | 韩宗珠, 张贺, 范德江, 等. 西南印度洋中脊50°E基性超基性岩石地球化学特征及其成因初探[J]. 中国海洋大学学报(自然科学版), 2012, 42(9): 69-76. |
[31] | Nath B N, Bau M, Rao B R, et al. Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone[J]. Geochimica et Cosmochimica Acta, 1997, 61(12): 2375-2388. doi: 10.1016/S0016-7037(97)00094-X |
[32] | Chavagnac V, German C R, Milton J A, et al. Sources of REE in sediment cores from the Rainbow vent site (36°14'N, MAR)[J]. Chemical Geology, 2005, 216(3/4): 329-352. |
[33] | McArthur J M, Elderfield H. Metal accumulation rates in sediments from Mid-Indian Ocean Ridge and Marie Celeste Fracture Zone[J]. Nature, 1977, 266(5601): 437-439. doi: 10.1038/266437a0 |
[34] | Liang J, Tao C, Yang W, et al. 230Th/238U Dating of Sulfide Chimneys in the Longqi-1 Hydrothermal Field, Southwest Indian Ridge[J]. Acta Geologica Sinica, 2018, 93(S2): 77-78. |
[35] | Huang X, Chen S, Zeng Z, et al. The influence of seafloor hydrothermal activity on major and trace elements of the sediments from the South Mid-Atlantic Ridge[J]. Journal of Ocean University of China, 2017, 16(5): 775-780. doi: 10.1007/s11802-017-3311-y |
[36] | Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. |
Sampling location of the core GC03
Micrographs of GC03 sediment core in study area
Vertical distribution of major elements in the core GC03
Profile of 100*Al/(Al+Fe+Mn)of the core GC03
Chondrite-normalized REY distribution patterns of the GC03 core and BGS samples
Discriminant diagrams of compositions of the core GC03
Discrimination plot of V/(V+Ni)-U/Th