2021 Vol. 40, No. 2-3
Article Contents

WANG Haifeng, ZHANG Zhen, YANG Yong, DENG Xiguang, XU Huaning, ZHU Kechao, HE Gaowen. REE-rich sediments in the Central Pacific Basin and their acoustic characteristics[J]. Geological Bulletin of China, 2021, 40(2-3): 305-319.
Citation: WANG Haifeng, ZHANG Zhen, YANG Yong, DENG Xiguang, XU Huaning, ZHU Kechao, HE Gaowen. REE-rich sediments in the Central Pacific Basin and their acoustic characteristics[J]. Geological Bulletin of China, 2021, 40(2-3): 305-319.

REE-rich sediments in the Central Pacific Basin and their acoustic characteristics

  • To understand the enrichment mechanism of rare earth elements(REE) in the deep-sea sediment, and the regional stratigraphy of the Central Pacific Basin, Guangzhou Marine Geological Survey carried out shallow stratigraphic profile survey, single channel seismic profile survey and piston core sediment sampling in 2013, based on the method of geophysical exploration in combination with geological sampling.The following five stratigraphic units were identified by means of shallow stratigraphic profile survey and single channel seismic profile survey: ①0~12 m, Quaternary-Upper Oligocene pelagic clay; ②12~58 m, Middle Oligocene-Eocene(Late Cretaceous?) chert layer and limestone; ③58~127 m, Late Cretaceous nannofossil ooze, chalk; ④127~144 m, limestone with chert; e, and basalt.The results of lithology and element geochemical analysis indicate that the enrichment of REE in deep-sea sediments is mainly due to the contribution of biogenic apatite and volcanic hydrothermal components, while terrigenous components are not conducive to the enrichment of REE.The REE-rich deposits in the study area are mainly in pelagic transparent clay layers on the top, while the high impedance chert layers in the lower part since Oligocene can be considered as the bottom boundary of the REE-rich deposits.The results show that the targeted sedimentary layer can be quickly identified in the REE-rich sediment survey, under the guidance of shallow stratigraphic profile survey, which can provide technical support for the exploration of deep-sea potential REE resources.

  • 加载中
  • [1] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 3: 535-539.

    Google Scholar

    [2] Damuth J E, Jacobi R D, Hayes D E. Sedimentation processes in the Northwest Pacific Basin revealed by echo-character mapping studies[J]. Geology Society of America Bulletin, 1983, 94(3): 381-395. doi: 10.1130/0016-7606(1983)94<381:SPITNP>2.0.CO;2

    CrossRef Google Scholar

    [3] 王海峰, 刘永刚, 朱克超. 中太平洋海盆多金属结核分布及其与CC区中国多金属结核开辟区多金属结核特征对比[J]. 海洋地质与第四纪地质, 2015, 35(2): 73-79.

    Google Scholar

    [4] Heezen B C, MacGregor I D, Foreman H P, et al. The post Jurassic sedimentary sequence on the Pacific Plate: a kinematic interpretation of diachronous deposits[C]//Initial Reports of the Deep Sea Drilling Project 20. U.S. Government Printing Office, 1973.

    Google Scholar

    [5] 梁德华, 黄永样, 钱江初, 等. 中华人民共和国国家标准, 大洋多金属结核矿产勘查规程(GB/T 17229.34-1998)[S]. 北京: 中国标准出版社, 1998: 1-67.

    Google Scholar

    [6] 李家彪, 柯长志, 康寿岭, 等. 中华人民共和国国家标准, 海洋调查规范, 第8部分: 海洋地质地球物理调查(GB/T 12763.8-2007)[S]. 北京: 中国标准出版社, 2007: 1-88.

    Google Scholar

    [7] 王苏明, 颜茂弘. 中华人民共和国国家标准, 硅酸盐岩石化学分析方法, 第28部分: 16个主次成分量测定(GB/T 14506.28-2010)[S]. 中国标准出版社, 2010: 1-67.

    Google Scholar

    [8] 夏宁, 宋苏顷, 武朝辉, 等. 中华人民共和国国家标准, 海底沉积物化学分析方法(GB/T 20260-2006)[S]. 北京: 中国标准出版社, 2006: 1-32.

    Google Scholar

    [9] Lee S, Chough S, Black G, et al. Chirp(2-7kHz)echo characters of the south Korea Plateau, East Sea: Styles of mass movement and sediment gravity flow[J]. Marine Geology, 2002, 184(3/4): 227-247.

    Google Scholar

    [10] 李晓辉, 李日辉, 徐晓达. 北黄海浅层声学地层[J]. 海洋地质与第四纪地质, 2011, 31(3): 17-22.

    Google Scholar

    [11] 赵斌, 吕文超, 张向宇, 等. 西太平洋维嘉平顶山沉积特征及富钴结壳资源意义[J]. 地质通报, 2020, 39(1): 18-26.

    Google Scholar

    [12] Lee T G, Hein J R, Lee K, et al. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp(3-7 kHz)sub-bottom profiles[J]. Deep Sea Research(I), 2005, 52(10): 1932-1956. doi: 10.1016/j.dsr.2005.04.009

    CrossRef Google Scholar

    [13] 陈姗姗, 王中波, 李日辉, 等. 渤海东部潮流沉积特征及MIS4以来的沉积环境变化[J]. 高校地质学报, 2018, 24(2): 297-306.

    Google Scholar

    [14] 徐泰然, 卢占武, 张雪梅, 等. 拉萨地体南部多金属矿集区构造样式——来自深地震反射的证据[J]. 地质通报, 2019, 38(10): 1595-1602.

    Google Scholar

    [15] 朱克超, 任江波, 王海峰, 等. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制[J]. 地球科学, 2015, 40(6): 1052-1059.

    Google Scholar

    [16] 任江波, 姚会强, 朱克超, 等. 稀土元素及钇在东太平洋CC区深海泥中的富集特征及机制[J]. 地学前缘, 2015, 22(4): 200-211.

    Google Scholar

    [17] Kazutaka Y, Hanjie L, Koichiro F, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93(25/26): 25-36.

    Google Scholar

    [18] Ziegler C L, Murray R W, Hovan S A, et al. Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean[J]. Earth and Planetary Science Letters, 2007, 254: 416-432. doi: 10.1016/j.epsl.2006.11.049

    CrossRef Google Scholar

    [19] 张富元, 章伟艳, 张霄宇, 等. 深海沉积物分类与命名[M]. 北京: 海洋出版社, 2013: 1-241.

    Google Scholar

    [20] Kazutaka Y, Junichiro O, Takashi M, et al. Statistic and Isotopic Characterization of Deep-Sea Sediments in the Western North Pacific Ocean: Implications for Genesis of the Sediment Extremely Enriched in Rare Earth Elements[J]. Geochemistry, Geophysisc, Geosystems, 2019, 20(7): 1527-2027.

    Google Scholar

    [21] 刘季花, 石学法, 陈丽蓉, 等. 东太平洋沉积物中粘土组分的REEs和Nd: 粘土来源的证据[J]. 中国科学(D辑), 2004, 34(6): 552-561.

    Google Scholar

    [22] Dubinin A V. Geochemistry of rare earth elements in oceanic phillipsites[J]. Lithology and Mineral Resource, 2000, 35: 101-108. doi: 10.1007/BF02782672

    CrossRef Google Scholar

    [23] Bernat M. Les isotopes de l'uranium et du thorium et les terres rares dans l'environnement marine[J]. Cahiers O.R.S.T.O.M. série Géologie, 1975, 7: 65-83.

    Google Scholar

    [24] Oudin E, Cocherie A. Fish debris record the hydrothermal activity in the Atlantis Ⅱ Deep sediments(Red Sea)[J]. Geochimica et Cosmochimica Acta, 1988, 52: 177-184. doi: 10.1016/0016-7037(88)90065-8

    CrossRef Google Scholar

    [25] Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minami-Torishima area, Southeastern Japan[J]. Resource Geology, 2014, 64(1): 47-57. doi: 10.1111/rge.12026

    CrossRef Google Scholar

    [26] Strekopytov S V, Dubinin A V, Volkov II. General Regularities in the Behavior of Rare Earth Elements in Pelagic Sediments of the Pacific Ocean[J]. Lithology and Mineral Resources, 1999, 34(2): 111-122.

    Google Scholar

    [27] Junchiro O, Kazutaka Y, Shiki M, et al. Geological factors responsible for REY-rich mud in the western North Pacific Ocean: Implications from mineralogy and grain size distributions[J]. Geochemcial Journal, 2016, 50(6): 1-13.

    Google Scholar

    [28] Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases[J]. Geochimicaet Cosmochimica Acta, 1974, 38: 1007-1022. doi: 10.1016/0016-7037(74)90002-7

    CrossRef Google Scholar

    [29] 赵其渊, 张建华. 介绍海洋自生矿物-钙十字沸石[J]. 海洋科学, 1979, 1: 34-36.

    Google Scholar

    [30] 彭汉昌, 刘正坤. 深海沉积物中的钙十字沸石[J]. 海洋学报, 1992, 14(6): 68-73.

    Google Scholar

    [31] 黄永样, 杨慧宁, 匡耀求, 等. 海底沉积物类型及其地球化学环境对多金属结核形成与分布的控制作用[M]. 武汉: 中国地质大学出版社, 1997: 1-140.

    Google Scholar

    [32] 王海峰, 韩玉林, 朱克超, 等. 东太平洋克拉里昂-克里帕顿断裂带WPC1101沉积柱样磁性地层及沉积环境[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1892-1904.

    Google Scholar

    [33] Jones E J W. Marine Geophysics[M]. England: John Wiely & Sons Ltd, 1999: 314-341.

    Google Scholar

    [34] Moore T C. Biogenic silica and chert in the Pacific Ocean[J]. Geology, 2008, 36(12): 975-978. doi: 10.1130/G25057A.1

    CrossRef Google Scholar

    [35] Moore T C. Chert in the Pacific: Biogenic silica and hydrothermal circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261(1): 87-99.

    Google Scholar

    [36] 刘文, 尹显科, 吴建亮, 等. 西藏班公路-怒江缝合带西段去申拉组泥质硅质岩的发现及其地质意义[J]. 地质通报, 2019, 38(4): 484-493.

    Google Scholar

    [37] Lancelot Y. Chert and silica diagenesis in sediments from the Central Pacific[C]//Initial Reports of the Deep Sea Drilling Project 17. U.S. Government Printing Office, 1971.

    Google Scholar

    [38] Douglas R G, Roth P H, Moore T C, et al. Biostratigraphic synthesis: hiatuses and unconformities[C]//Initial Reports of the Deep Sea Drilling Project 17. U.S. Government Printing Office, 1971.

    Google Scholar

    [39] 王汾连, 何高文, 王海峰, 等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4): 67-75.

    Google Scholar

    [40] 王海峰, 赖佩欣, 邓希光, 等. 马里亚纳海沟挑战者深渊初期多金属氧化物的矿物学、地球化学特征及其成因环境研究[J]. 海洋学研究, 2019, 37(1): 21-29.

    Google Scholar

    [41] 何高文, 梁东红, 宋成兵, 等. 浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线[J]. 地球科学, 2005, 30(4): 509-512. doi: 10.3321/j.issn:1000-2383.2005.04.017

    CrossRef Google Scholar

    [42] 韦振权, 何高文, 邓希光, 等. 大洋富钴结壳资源调查与研究进展[J]. 中国地质, 2017, 44(3): 460-472.

    Google Scholar

    [43] Nakamura K, Machida S, Nokino K, et al. Acoustic characterization of pelagic sediments using sub-bottom profiler data: Implications for the distribution of REY-rich mud in the Minamitorishima EEZ, western Pacific[J]. Geochemical Journal, 2016, 50(6): 605-619. doi: 10.2343/geochemj.2.0433

    CrossRef Google Scholar

    [44] 朱克超, 任江波, 王海峰. 太平洋中部富REY深海沉积物的地球化学特征及化学分类[J]. 地球学报, 2016, 37(3): 287-293.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1161) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint