2021 Vol. 40, No. 2-3
Article Contents

DENG Xianze, REN Jiangbo, DENG Xiguang, HE Gaowen, YANG Shengxiong. Cobalt-rich crust obtains high contents of key elements from seawater: element absorption and distribution[J]. Geological Bulletin of China, 2021, 40(2-3): 376-384.
Citation: DENG Xianze, REN Jiangbo, DENG Xiguang, HE Gaowen, YANG Shengxiong. Cobalt-rich crust obtains high contents of key elements from seawater: element absorption and distribution[J]. Geological Bulletin of China, 2021, 40(2-3): 376-384.

Cobalt-rich crust obtains high contents of key elements from seawater: element absorption and distribution

  • Cobalt-rich crust is formed from precipitation of dissolved elements in low temperature seawater on the slope of seamounts.It is widely distributed on the slope of seamounts and undersea plateau in the oceans, with huge reserves.Ferromanganese crusts have high contents of Co, Ni, Pt, REE, Te, which reach 105-1010 times of the seawater.They are important sources of new energy and high-tech elements in the future and have great potential economic value.The former researchers have focused on the association and enrichment mechanism of the elements in the cobalt-rich crust, with the help of step leaching, absorption experiment, modern ocean observation, water chemistry, high resolution of fine mineralogy.It reveals that cobalt-rich crusts are mainly composed of ferruginous vernadite and amorphous Iron hydroxide.In the process of marine chemistry near seamounts, ferrugvnous vernadite colloid and iron hydroxide colloid preferentially adsorb Co, Ni, Pt, REE and Cu, Pb, Te, REE, respectively.Surface oxidation/lattice replacement result in the continuous accumulation of Co, Pt, Ni, Ce in ferrugvnous Vernadite and Te, Ce in iron hydroxide.The extremely slow growth rate (1~10 mm/Ma), ultra-high porosity (60%) and large surface area (300 m2/g) of cobalt-rich crusts all promote the high enrichment of key elements in the crusts.The trace elements enrichment mechanism of the cobalt-rich crust is key to paleo-oceanography inversion.On the other way, the factors controlling the geochemical differences of cobalt-rich crust in the ocean need further study, understanding which will contribute to the exploration of cobalt-rich crust resources.

  • 加载中
  • [1] 韦振权, 何高文, 邓希光, 等. 大洋富钴结壳资源调查与研究进展[J]. 中国地质, 2017, 44, (3): 460-472.

    Google Scholar

    [2] Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[J]. Handbook of Marine Mineral Deposits, 2000, 18: 239-273.

    Google Scholar

    [3] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    CrossRef Google Scholar

    [4] Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7

    CrossRef Google Scholar

    [5] Halbach P, Puteanus D, Manheim F T, et al. Platinum concentrations in ferromanganese seamount crusts from the Central Pacific[J]. Naturwissenschaften, 1984, 71(11): 577-579. doi: 10.1007/BF01189182

    CrossRef Google Scholar

    [6] Moore J, Normark W R, Holcomb R T. Giant Hawaiian underwater landslides[J]. Science, 1994, 264(5155): 46. doi: 10.1126/science.264.5155.46

    CrossRef Google Scholar

    [7] 任江波, 何高文, 姚会强, 等. 磷酸盐化作用对富钴结壳中稀土元素的影响[J]. 海洋地质与第四纪地质, 2017, 90(2): 37-47.

    Google Scholar

    [8] Koschinsky A, Hein J R, Kraemer D, et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach[J]. Chemical Geology, 2020, 539: 119426. doi: 10.1016/j.chemgeo.2019.119426

    CrossRef Google Scholar

    [9] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[J]. Treatise on Geochemistry, 2014, (13): 273-289.

    Google Scholar

    [10] Hein J R, Koschinsky A, Halliday A N. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium[J]. Geochimica et Cosmochimica Acta, 2003, 67(6): 1117-1127. doi: 10.1016/S0016-7037(02)01279-6

    CrossRef Google Scholar

    [11] Takahashi Y, Manceau A, Geoffroy N, et al. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides[J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 984-1008. doi: 10.1016/j.gca.2006.11.016

    CrossRef Google Scholar

    [12] Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules[J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    CrossRef Google Scholar

    [13] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    CrossRef Google Scholar

    [14] Ren Y, Sun X, Guan Y, et al. Distribution of rare earth elements plus yttrium among major mineral phases of marine Fe-Mn crusts from the South China Sea and Western Pacific Ocean: A Comparative Study[J]. Minerals, 2018, 9(1): 1-19. doi: 10.3390/min9010001

    CrossRef Google Scholar

    [15] Hein J R. Manganese Nodules[M]. Encyclopedia of earth science series, 2016: 408-412.

    Google Scholar

    [16] Jiang X D, Sun X M, Chou Y M, et al. Geochemistry and origins of carbonate fluorapatite in seamount Fe Mn crusts from the Pacific Ocean[J]. Marine Geology, 2000, 423: 106135.

    Google Scholar

    [17] Turner D R, Whitfield M, Dickson A A G. The equilibrium speciation of dissolved components in freshwater and sea water at 25℃ and 1 atmpressure[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 855-881. doi: 10.1016/0016-7037(81)90115-0

    CrossRef Google Scholar

    [18] Byrne R H, Kump L R, Cantrell K J. The influence of temperature and ph on trace metal speciation in seawater[J]. Marine Chemistry, 1988, 25(2): 163-181. doi: 10.1016/0304-4203(88)90062-X

    CrossRef Google Scholar

    [19] Byrne RH. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios[J]. Geochemical Transactions, 2002, 3(1): 11-16. doi: 10.1186/1467-4866-3-11

    CrossRef Google Scholar

    [20] Usui A, Hino H, Suzushima D, et al. Modern precipitation of hydrogenetic ferromanganese minerals during on-site 15-year exposure tests[J]. Scientific Reports, 2020, 10(1): 1-10. doi: 10.1038/s41598-019-56847-4

    CrossRef Google Scholar

    [21] Tebo B M, Clement B G, Dick G J. Biotransformations of manganese[C]//Hurst C J, Crawford R L, Garland J L, et al. Manual of Environmental Microbiology. Washington, DC: ASM Press, 2007: 1223-1238.

    Google Scholar

    [22] Villalobos M, Bargar J, Sposito G. Trace metal retention on biogenic manganese oxide nanoparticles[J]. Elements, 2005, 1(4): 223-226. doi: 10.2113/gselements.1.4.223

    CrossRef Google Scholar

    [23] Templeton A S, Knowles E J, Eldridge D L, et al. A seafloor microbial biome hosted within incipient ferromanganese crusts[J]. Nature Geoscience, 2009, 2(12): 872-876. doi: 10.1038/ngeo696

    CrossRef Google Scholar

    [24] Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas[J]. Nature, 1983, 304(5928): 716-719. doi: 10.1038/304716a0

    CrossRef Google Scholar

    [25] Maeno M Y, Ohashi H, Yonezu K, et al. Sorption behavior of the Pt(Ⅱ) complex anion on manganese dioxide(δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust[J]. Mineral Deposita, 2016, 51(2): 211-218. doi: 10.1007/s00126-015-0599-7

    CrossRef Google Scholar

    [26] 高晶晶, 刘季花, 张辉, 等. 太平洋海山富钴结壳中铂族元素赋存状态与富集机理[J]. 海洋学报, 2019, 41(8): 115-124.

    Google Scholar

    [27] De Carlo E H, McMurtry G M. Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific[J]. Chemical Geology, 1992, 95(3/4): 235-250.

    Google Scholar

    [28] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and sea water[J]. Geochimica et Cosmochimica Acta, 1996, 60(2): 1709-1725.

    Google Scholar

    [29] Byrne R H, Kim K H. Rare earth element scavenging in sea water[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2645-2656. doi: 10.1016/0016-7037(90)90002-3

    CrossRef Google Scholar

    [30] Takahashi Y, Shimizu H, Usui A, et al. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray absorption near-edge structure(XANES)[J]. Geochimica et Cosmochimica Acta, 2000, 64(17): 2929-2935. doi: 10.1016/S0016-7037(00)00403-8

    CrossRef Google Scholar

    [31] Moffet J W. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochimica et Cosmochimica Acta, 1994, 58(2): 695-703. doi: 10.1016/0016-7037(94)90499-5

    CrossRef Google Scholar

    [32] Elderfield H, Greaves M J. Determination of the Rare Earth Elements in Sea Water[M]. Springer, 1983: 427-445.

    Google Scholar

    [33] 崔迎春, 石学法, 刘季花, 等. 磷酸盐化作用对富钴结壳元素相关性的影响[J]. 地质科技情报, 2008, 27(3): 61-67. doi: 10.3969/j.issn.1000-7849.2008.03.009

    CrossRef Google Scholar

    [34] Halbach P. Co-rich and platinum bearing manganese crust deposits on seamounts: nature, formation and metal potential[J]. Marine Mineral, 1989, 8(1): 23-39.

    Google Scholar

    [35] 潘家华, 刘淑琴, Carlo De E. 大洋磷酸盐化作用对富钴结壳元素富集的影响[J]. 地球学报, 2002, 23(5): 403-407. doi: 10.3321/j.issn:1006-3021.2002.05.003

    CrossRef Google Scholar

    [36] 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报, 2011, 41(3): 707-714.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(1997) PDF downloads(16) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint