Citation: | WEI Zhenquan, YANG Yong, HE Gaowen, YANG Shengxiong, YAO Xiang. Drift history and subsidence process of Weijia Guyot, China contract area of Co-rich crust[J]. Geological Bulletin of China, 2021, 40(2-3): 260-266. |
Based on the global plate tectonic-bathymetric model, the horizontal drift track and vertical subsidence process of the Weijia Guyot, also known as the cobalt-rich nodule contract area of China in the Western Pacific Ocean, are inversed to obtain the palaeobathymetry and palaeolatitude of seamounts in different historical periods and to discuss the influence of hot spots in the evolution process of the seamount.The results show that the Weijia Guyot was formed initially in the isotopic anomaly and thermal anomaly area of South Pacific, and then drifted northeastward about 7500 km to the present position.There is a certain distance (about 200 km) between the initial location of the Weijia Guyot and its adjacent hot spots.The Weijia Guyot did not pass through these hot spots in the process of drift, and its closest distance to them is 150 km.Combined with the analysis of the present structure of the Weijia Guyot, it is speculated that these hot spots are not the only cause of the Weijia Guyot formation, but the Weijia Guyot was branded as "hot spots" in its formation and drift process.
[1] | 任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院海洋研究所博士学位论文, 2005: 64-67. |
[2] | Koppers A A P, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?[J]. Geochemistry Geophysics Geosystems, 2003, 4(10): 1-49. |
[3] | Staudigel H, Park K H, Pringle M, et al. The longevity of the South Pacific Isotope and Thermal Anomaly[J]. Earth and Planetary Science Letters, 1991, 102(1): 24-44. doi: 10.1016/0012-821X(91)90015-A |
[4] | Koppers A A P, Staudigel H, Christie D M, et al. Sr-Nd-Pb Isotope Geochemistry of Leg 144 West Pacific guyots: implications for the geochemical evolution of the 'SOPITA' mantle anomaly[C]//Haggerty JA, Premoli Silva I, Rack F, et al(Eds. ). Proc. ODP Leg 144, 1995: 535-545. |
[5] | Koppers A A P, Staudigel H, Wijbrans J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion[J]. Earth and Planetary Science Letters, 1998, 163(1/4): 53-68. |
[6] | Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth Science Reviews, 2012, 113(3/4): 212-270. |
[7] | Epp D. Possible perturbations to hotspot traces and implications for the origin and structure of the Line Islands[J]. Journal of Geophysical Research, 1984, 89(B13): 11273-11286. doi: 10.1029/JB089iB13p11273 |
[8] | Lonsdale P. Geography and history of the Louisville hotspot chain in the Southwest Pacific[J]. Journal of Geophysical Research, 1988, 93(B4): 3078-3104. doi: 10.1029/JB093iB04p03078 |
[9] | Wessel P, Kroenke L. A geometric technique for relocating hotspots and refining absolute plate motions[J]. Nature, 1997, 387: 365-369. doi: 10.1038/387365a0 |
[10] | 何高文, 赵祖斌, 朱克超, 等. 西太平洋富钴结壳资源[M]. 北京: 地质出版社, 2001: 10-15. |
[11] | 李三忠, 余珊, 赵淑娟, 等. 超大陆与全球板块重建派别[J]. 海洋地质与第四纪地质, 2014, 34(6): 97-117. |
[12] | Argus D F, Heflin M B. Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System[J]. Geophysical Research Letters, 1995, 22(15): 1973-1976. doi: 10.1029/95GL02006 |
[13] | Argus D F, Gordon R G, Heflin M B, et al. The angular velocities of the plates and the velocity of Earth's centre from space geodesy[J]. Geophysical Journal International, 2010, 180(3): 913-960. doi: 10.1111/j.1365-246X.2009.04463.x |
[14] | Demets C, Gordon R G, Argus D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80. doi: 10.1111/j.1365-246X.2009.04491.x |
[15] | Scotese C R. Jurassic and cretaceous plate tectonic reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 87(1/4): 493-501. |
[16] | Müller R D, Sdrolias M, Gaina C, et al. Long-term sea level fluctuations driven by ocean basin dynamics[J]. Science, 2008, 319(5868): 1357-1362. doi: 10.1126/science.1151540 |
[17] | Stadler G, Gurnis M, Burstedde C, et al. The dynamics of plate tectonics and mantle flow: From local to global scales[J]. Science, 2010, 329(5995): 1033-1038. doi: 10.1126/science.1191223 |
[18] | Scotese C R, Wright N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project[M]. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018. |
[19] | Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangeabreakup[J]. Annu. Rev. Earth Planet. Sci., 2016, 44(1): 107-138. doi: 10.1146/annurev-earth-060115-012211 |
[20] | Piper J D A. A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013, 589: 44-56. doi: 10.1016/j.tecto.2012.12.042 |
[21] | Boyden J A, Müller R D, Gurnis M, et al. Next-generation plate-tectonic recon structions using GPlates[C]//Keller G R, Baru C. Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences. Cambridge, UK: Cambridge Univ. Press, 2011: 95-114. |
[22] | Cannon J, Lau E, Müller R D. Plate tectonic raster reconstruction in GPlates[J]. Solid Earth, 2014, 5(2): 741-755. doi: 10.5194/se-5-741-2014 |
[23] | Qin X, Müller R D, Cannon J, et al. The GPlates Geological Information Model and Markup Language[J]. Geosci. Instrum. Methods Data Syst., 2012, 2: 365-428. |
[24] | Gurnis M, Turner M, Zahirovic S, et al. Plate tectonic reconstructions with continuously closing plates[J]. Comput. Geosci., 2012, 38(1): 35-42. doi: 10.1016/j.cageo.2011.04.014 |
[25] | Seton M, Whittaker J M, Wessel P, et al. Community infrastructure and repository for marine magnetic identifications[J]. Geochem. Geophys. Geosyst, 2014, 15(4): 1629-1641. doi: 10.1002/2013GC005176 |
[26] | Matthews K J, Müller R D, Wessel P, et al. The tectonic fabric of the ocean basins[J]. Journal of Geophysical research, 2011, 116: B12109. doi: 10.1029/2011JB008413 |
[27] | Wessel P, Matthews K J, Müller R D, et al. Semiautomatic fracture zone tracking[J]. Geochemistry Geophysic Geosystems, 2015, 16: 2462-2472. doi: 10.1002/2015GC005853 |
[28] | Dutkiewicz A, Müller R D, Cannon J, et al. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous[J]. Geology, 2019, https://doi.org/10.1130/G45424.1. doi: 10.1130/G45424.1 |
[29] | Scotese C R. Atlas of Oceans & Continents: Plate Tectonics, 1.5 by-Today, PALEOMAP Project Report 112117A[M]. https://www.researchgate.net/publication/321197460.2017. |
[30] | Stein C A, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature, 1992, 359(6391): 123-129. doi: 10.1038/359123a0 |
[31] | Clouard V, Bonneville A. How many Pacific hotspots are fed by deep-mantle plumes?[J]. Geology, 2001, 21(8): 695-698. |
[32] | Sager W W, Handschumacher D W, Hilde T W C, et al. Tectonic evolution forthe northern Pacific plate and Pacific-Farallon-Izanagi triple junction in the Late Jurassic and Early Cretaceous(M21-M10)[J]. Tectonophysics, 1988, 155(1/4): 345-364. |
[33] | Smith W H F, Staudigel H, Watts A B, et al. The Magellan seamounts: early Cretaceous record of the south Pacific isotopic and thermal anomaly[J]. J. Geophys. Res., 1989, 94(B8): 10501-10523. doi: 10.1029/JB094iB08p10501 |
[34] | Parsons B, Sclater J G. An analysis of the variation of ocean floor bathymetry and heat flow with age[J]. Journal of Geophysical Research, 1977, 82(5): 803-827. doi: 10.1029/JB082i005p00803 |
Simplified structural map of the Magellan Seamounts
The drift track of the Weijia Guyo since its formation
Curve of palaeobathymetry at the center of the Weijia Guyot
Palaeobathymetry diagram of the Weijia Guyot and its adjacent areas