2021 Vol. 40, No. 2-3
Article Contents

LIU Lele, LIU Changling, WU Nengyou, RUAN Hailong, ZHANG Yongchao, HAO Xiluo, BU Qingtao. Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments[J]. Geological Bulletin of China, 2021, 40(2-3): 408-422.
Citation: LIU Lele, LIU Changling, WU Nengyou, RUAN Hailong, ZHANG Yongchao, HAO Xiluo, BU Qingtao. Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments[J]. Geological Bulletin of China, 2021, 40(2-3): 408-422.

Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments

  • It is of great significance to understand the evolution characteristics of basic physical properties of gas hydrate reservoir to promote the exploration and test production of gas hydrate resources. Currently, the simulation experiment and test of physical property of hydrate-bearing sediments is still given priority to artificial preparation of natural gas hydrate core samples, which results a certain gap between the test results and the understanding of the simulation experiment and the requirements of the testing production engineering of natural gas hydrate resources. As physical property testing data highly need to be compared and corrected in situ in the field, pressure coring, pressure core transfer and testing techniques of hydrate-bearing sediments is an effective means for the acquisition and accumulation of physical testing data.Based on the introduction of the pressure coring, pressure transfer and testing methods, its advantages and disadvantages at home and abroad are comprehensively summarized, and the basic understanding of the core transfer and testing of hydrate-bearing sediments is deeply analyzed. According to the research and development status of pressure core transfer and testing system of offshore hydrate-bearing sediments in China, the challenges in this field are summarized.Finally, in view of the challenges, suggestions are put forward for the independent research and development capability of pressure core transfer and testing technology of offshore hydrate-bearing sediments and its related equipment in China.

  • 加载中
  • [1] Li J, Ye J, Qin X, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003

    CrossRef Google Scholar

    [2] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568.

    Google Scholar

    [3] 梁金强, 吴能友, 杨木壮, 等. 天然气水合物资源量估算方法及应用[J]. 地质通报, 2006, 25(9/10): 1205-1210.

    Google Scholar

    [4] Boswell R. Is Gas Hydrate Energy Within Reach?[J]. Science, 2009, 325(5943): 957-958. doi: 10.1126/science.1175074

    CrossRef Google Scholar

    [5] 张伟, 梁金强, 苏丕波, 等. 双似海底反射层与天然气水合物成藏关系研究进展与展望[J]. 中国地质, 2020, 47(1): 29-42.

    Google Scholar

    [6] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11.

    Google Scholar

    [7] Liu L, Lu X, Zhang X, et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization[J]. Advances in Geo-Energy Research, 2017, 1(3): 135-147. doi: 10.26804/ager.2017.03.01

    CrossRef Google Scholar

    [8] Li Y, Liu C, Liu L, et al. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment[J]. Advances in Geo-Energy Research, 2018, 2(1): 43-52. doi: 10.26804/ager.2018.01.04

    CrossRef Google Scholar

    [9] 魏合龙, 孙治雷, 王利波, 等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 36(1): 1-13.

    Google Scholar

    [10] 李晶, 贺行良, 刘昌岭, 等. 海底多组分水合物分解气好氧氧化实验研究[J]. 海洋地质与第四纪地质, 2017, 37(5): 204-216.

    Google Scholar

    [11] 刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26.

    Google Scholar

    [12] 胡高伟, 李彦龙, 吴能友, 等. 神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5): 151-158.

    Google Scholar

    [13] Li Y, Hu G, Wu N, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea[J]. J. Acta Oceanologica Sinica, 2019, 38(3): 114-123. doi: 10.1007/s13131-019-1404-8

    CrossRef Google Scholar

    [14] Taleb F, Garziglia S, Sultan N. Hydromechanical Properties of Gas Hydrate-Bearing Fine Sediments From In Situ Testing[J]. Journal of Geophysical Research Solid Earth, 2018, 123(11): 9615-9634. doi: 10.1029/2018JB015824

    CrossRef Google Scholar

    [15] Waite W F, Kneafsey T J, Winters W J, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B7): B07102.

    Google Scholar

    [16] 王韧, 张凌, 孙慧翠, 等. 海洋天然气水合物岩心处理关键技术进展[J]. 地质科技情报, 2017, 36(2): 249-257. doi: 10.3969/j.issn.1009-6248.2017.02.026

    CrossRef Google Scholar

    [17] 张凌, 蒋国盛, 宁伏龙, 等. 天然气水合物保真取心装置内部密封技术分析[J]. 现代地质, 2009, 23(6): 1147-1152. doi: 10.3969/j.issn.1000-8527.2009.06.021

    CrossRef Google Scholar

    [18] Abid K, Spagnoli G, Teodoriu C, et al. Review of pressure coring systems for offshore gas hydrates research[J]. Underwater Technology, 2015, 33(1): 19-30. doi: 10.3723/ut.33.019

    CrossRef Google Scholar

    [19] Dai S, Boswell R, Waite W F, et al. What has been learned from pressure cores[C]//9th International Conference on Gas Hydrate, Denver, Colorado, USA, June 25-30, 2017.

    Google Scholar

    [20] Schultheiss P, Holland M, Roberts J, et al. Advances in wireline pressure coring, coring handling, and core analysis related to gas hydrate drilling investigations[C]//9th International Conference on Gas Hydrate, Denver, Colorado, USA, June 25-30, 2017.

    Google Scholar

    [21] 董刚, 龚建明, 苏新. 海洋天然气水合物钻探取心工艺[J]. 海洋地质前沿, 2011, 27(3): 48-51, 69.

    Google Scholar

    [22] Yun T, Narsilio G, Santamarina J, et al. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure[J]. Marine Geology, 2006, 229(3): 285-293.

    Google Scholar

    [23] Lee J Y, Schultheiss P J, Druce M, et al. Pressure core sub sampling for GH production tests at in situ effective stress[J]. Fire in the Ice Newsletter, 2009, 9(4): 16-17.

    Google Scholar

    [24] Yoneda J, Masui A, Konno Y, et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 471-486.

    Google Scholar

    [25] Yoneda J, Oshima M, Kida M, et al. Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India's National Gas Hydrate Program Expedition(NGHP) 02[J]. Marine and Petroleum Geology, 2019, 108: 482-501. doi: 10.1016/j.marpetgeo.2018.09.005

    CrossRef Google Scholar

    [26] Schultheiss P, Holland M, Roberts J, et al. PCATS: Pressure core analysis and transfer system[C]//7th International Conference on Gas Hydrates, Edinburgh, UK, 2011.

    Google Scholar

    [27] Schultheiss P, Aumann J T, Humphrey G D. Pressure coring and pressure core analysis developments for the upcoming Gulf of Mexico Joint Industry Project coring expedition[C]//Offshore Technology Conference, Houston, Texas, USA, 2010.

    Google Scholar

    [28] Schultheiss P J, Francis T J G, Holland M, et al. Pressure coring, logging and subsampling with the HYACINTH system[J]. New Techniques in Sediment Core Analysis, 2006, 267: 151-163.

    Google Scholar

    [29] Priest J A, Druce M, Roberts J, et al. PCATS Triaxial: A new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 460-470.

    Google Scholar

    [30] Santamarina J C, Dai S, Jang J, et al. Pressure Core Characterization Tools for Hydrate-Bearing Sediments[J]. Scientific Drilling, 2012, 14(6): 44-48.

    Google Scholar

    [31] Nagao J, Yoneda J, Konno Y, et al. Development of the Pressure-core Nondestructive Analysis Tools(PNATs) for Methane Hydrate Sedimentary Cores[C]//EGU General Assembly Conference Abstracts, 2015.

    Google Scholar

    [32] Yoneda J, Masui A, Konno Y, et al. Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 451-459.

    Google Scholar

    [33] Jin Y, Konno Y, Nagao J. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography[J]. Review of Scientific Instruments, 2014, 85(9): 094502. doi: 10.1063/1.4896354

    CrossRef Google Scholar

    [34] Yoneda J, Masui A, Tenma N, et al. Triaxial testing system for pressure core analysis using image processing technique[J]. Review of Scientific Instruments, 2013, 84(11): 114503. doi: 10.1063/1.4831799

    CrossRef Google Scholar

    [35] Wang D, Li Y, Liu C, et al. Study of hydrate occupancy, morphology and microstructure evolution with hydrate dissociation in sediment matrices using X-ray micro-CT[J]. Marine and Petroleum Geology, 2020, 113: 104138. doi: 10.1016/j.marpetgeo.2019.104138

    CrossRef Google Scholar

    [36] Li C, Liu C, Hu G, et al. Investigation on the Multiparameter of Hydrate-Bearing Sands Using Nano-Focus X-Ray Computed Tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3): 2286-2296. doi: 10.1029/2018JB015849

    CrossRef Google Scholar

    [37] Ta X H, Yun T S, Muhunthan B, et al. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 912-924. doi: 10.1002/2014GC005675

    CrossRef Google Scholar

    [38] Chaouachi M, Falenty A, Sell K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1711-1722. doi: 10.1002/2015GC005811

    CrossRef Google Scholar

    [39] Liu C, Meng Q, He X, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61(Supplement C): 14-21.

    Google Scholar

    [40] 刘昌岭, 孟庆国, 李承峰, 等. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 2017, 24(4): 41-50.

    Google Scholar

    [41] Holland M E, Schultheiss P J, Roberts J A. Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 407-423. doi: 10.1016/j.marpetgeo.2018.07.018

    CrossRef Google Scholar

    [42] Yun T S, Fratta D, Santamarina J C. Hydrate-Bearing Sediments from the Krishna Godavari Basin: Physical Characterization, Pressure Core Testing, and Scaled Production Monitoring[J]. Energy & Fuels, 2010, 24(11): 5972-5983.

    Google Scholar

    [43] Rees E V L, Priest J A, Clayton C. The structure of methane gas hydrate bearing sediments from the Krishna-Godavari Basin as seen from Micro-CT scanning[J]. Marine and Petroleum Geology, 2011, 28(7): 1283-1293. doi: 10.1016/j.marpetgeo.2011.03.015

    CrossRef Google Scholar

    [44] Cook A E, Anderson B I, Malinverno A, et al. Electrical anisotropy due to gas hydrate-filled fractures[J]. Geophysics, 2010, 75(6): F173-F185. doi: 10.1190/1.3506530

    CrossRef Google Scholar

    [45] Yun T S, Lee C, Lee J S, et al. A pressure core based characterization of hydrate-bearing sediments in the Ulleung Basin, Sea of Japan(East Sea)[J]. Journal of Geophysical Research: Solid Earth, 2011, 116: B02204.

    Google Scholar

    [46] Santamarina J C, Dai S, Terzariol M, et al. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 434-450.

    Google Scholar

    [47] Priest J A, Hayley J L, Smith W E, et al. PCATS triaxial testing: Geomechanical properties of sediments from pressure cores recovered from the Bay of Bengal during expedition NGHP-02[J]. Marine and Petroleum Geology, 2019, 108: 424-438. doi: 10.1016/j.marpetgeo.2018.07.005

    CrossRef Google Scholar

    [48] Jang J, Dai S, Yoneda J, et al. Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 537-550. doi: 10.1016/j.marpetgeo.2018.08.015

    CrossRef Google Scholar

    [49] Lee J Y, Santamarina J C, Ruppel C. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates[J]. Marine and Petroleum Geology, 2008, 25(9): 884-895. doi: 10.1016/j.marpetgeo.2008.01.019

    CrossRef Google Scholar

    [50] Kim H-S, Cho G-C, Lee J Y, et al. Geotechnical and geophysical properties of deep marine fine-grained sediments recovered during the second Ulleung Basin Gas Hydrate expedition, East Sea, Korea[J]. Marine and Petroleum Geology, 2013, 47(Supplement C): 56-65.

    Google Scholar

    [51] Hu G, Ye Y, Zhang J, et al. Acoustic response of gas hydrate formation in sediments from South China Sea[J]. Marine and Petroleum Geology, 2014, 52: 1-8. doi: 10.1016/j.marpetgeo.2014.01.007

    CrossRef Google Scholar

    [52] Bu Q, Hu G, Ye Y, et al. The elastic wave velocity response of methane gas hydarte formation in vertical gas migration systems[J]. Journal of Geophysics and Engineering, 2017, 14(3): 555-569. doi: 10.1088/1742-2140/aa6493

    CrossRef Google Scholar

    [53] Lee J Y, Francisca F M, Santamarina J C, et al. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11): B11105. doi: 10.1029/2009JB006670

    CrossRef Google Scholar

    [54] Suzuki K, Schultheiss P, Nakatsuka Y, et al. Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 346-357.

    Google Scholar

    [55] Priest J A, Best A I, Clayton C R I. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B4): B04102.

    Google Scholar

    [56] Priest J A, Rees E V L, Clayton C R I. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): B11205.

    Google Scholar

    [57] Clayton C, Priest J, Best A. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand[J]. Geotechnique, 2005, 55(6): 423-434. doi: 10.1680/geot.2005.55.6.423

    CrossRef Google Scholar

    [58] Zhang Z, Li C, Ning F, et al. Pore fractal characteristics of hydrate-bearing sands and implications to the saturated water permeability[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018721.

    Google Scholar

    [59] 刘乐乐, 张宏源, 刘昌岭, 等. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用[J]. 海洋地质与第四纪地质, 2017, 37(5): 159-165.

    Google Scholar

    [60] 张宏源, 刘乐乐, 刘昌岭, 等. 基于瞬态压力脉冲法的含水合物沉积物渗透性实验研究[J]. 实验力学, 2018, 33(2): 263-271.

    Google Scholar

    [61] Li G, Wu D M, Li X S, et al. Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands[J]. Applied Energy, 2017, 202: 282-292. doi: 10.1016/j.apenergy.2017.05.147

    CrossRef Google Scholar

    [62] Delli M L, Grozic J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2014, 120: 1-9. doi: 10.1016/j.petrol.2014.05.011

    CrossRef Google Scholar

    [63] Fujii T, Suzuki K, Takayama T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 310-322. doi: 10.1016/j.marpetgeo.2015.02.037

    CrossRef Google Scholar

    [64] Konno Y, Yoneda J, Egawa K, et al. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 487-495.

    Google Scholar

    [65] Kleinberg R L, Flaum C, Straley C, et al. Seafloor nuclear magnetic resonance assay of methane hydrate in sediment and rock[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B3): 2137.

    Google Scholar

    [66] Kleinberg R L, Flaum C, Griffin D D, et al. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B10): 2508.

    Google Scholar

    [67] Daigle H, Thomas B, Rowe H, et al. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333[J]. Jounarl of Geophysical Research Solid Earth, 2014, 119(4): 2631-2650. doi: 10.1002/2013JB010784

    CrossRef Google Scholar

    [68] Yoneda J, Oshima M, Kida M, et al. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 524-536. doi: 10.1016/j.marpetgeo.2018.07.006

    CrossRef Google Scholar

    [69] Dai S, Kim J, Xu Y, et al. Permeability anisotropy and relative permeability in sediments from the National Gas Hydrate Program Expedition 02, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 705-713. doi: 10.1016/j.marpetgeo.2018.08.016

    CrossRef Google Scholar

    [70] Cao S C, Jang J, Jung J, et al. 2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments[J]. Marine and Petroleum Geology, 2019, 108: 714-730. doi: 10.1016/j.marpetgeo.2018.09.010

    CrossRef Google Scholar

    [71] Jang J, Waite W F, Stern L A, et al. Physical property characteristics of gas hydrate-bearing reservoir and associated seal sediments collected during NGHP-02 in the Krishna-Godavari Basin, in the offshore of India[J]. Marine and Petroleum Geology, 2019, 108: 249-271. doi: 10.1016/j.marpetgeo.2018.09.027

    CrossRef Google Scholar

    [72] Kim J, Dai S, Jang J, et al. Compressibility and particle crushing of Krishna-Godavari Basin sediments from offshore India: Implications for gas production from deep-water gas hydrate deposits[J]. Marine and Petroleum Geology, 2019, 108: 697-704. doi: 10.1016/j.marpetgeo.2018.07.012

    CrossRef Google Scholar

    [73] Mahabadi N, Zheng X L, Jang J. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments[J]. Geophysical Research Letters, 2016, 43(9): 4279-4287. doi: 10.1002/2016GL068656

    CrossRef Google Scholar

    [74] Mahabadi N, Dai S, Seol Y, et al. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(8): 3099-3110. doi: 10.1002/2016GC006372

    CrossRef Google Scholar

    [75] Mahabadi N, Jang J. Relative water and gas permeability for gas production from hydrate-bearing sediments[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6): 2346-2353. doi: 10.1002/2014GC005331

    CrossRef Google Scholar

    [76] Liu L, Dai S, Ning F, et al. Fractal characteristics of unsaturated sands-implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 11-17. doi: 10.1016/j.jngse.2019.03.019

    CrossRef Google Scholar

    [77] 刘协鲁, 赵义, 刘海龙, 等. 海洋天然气水合物保温保压取样工具对比研究[J]. 地质装备, 2018, 19(1): 11-15. doi: 10.3969/j.issn.1009-282X.2018.01.003

    CrossRef Google Scholar

    [78] 赵尔信, 蔡家品, 贾美玲, 等. 我国海洋钻探技术[J]. 探矿工程(岩土钻掘工程), 2014, 41(9): 43-48, 70. doi: 10.3969/j.issn.1672-7428.2014.09.009

    CrossRef Google Scholar

    [79] 许俊良, 薄万顺, 朱杰然. 天然气水合物钻探取心关键技术研究进展[J]. 石油钻探技术, 2008, 36(5): 32-36. doi: 10.3969/j.issn.1001-0890.2008.05.008

    CrossRef Google Scholar

    [80] 李世伦, 程毅, 秦华伟, 等. 重力活塞式天然气水合物保真取样器的研制[J]. 浙江大学学报(工学版), 2006, 40(5): 888-892. doi: 10.3785/j.issn.1008-973X.2006.05.033

    CrossRef Google Scholar

    [81] Chen J, Fan W, Bingham B, et al. A long gravity-piston corer developed for seafloor gas hydrate coring utilizing an in situ pressure-retained method[J]. Energies, 2013, 6: 3353-3372. doi: 10.3390/en6073353

    CrossRef Google Scholar

    [82] Chen J, Gao Q, Liu H, et al. Development of a Pressure-Retained Transfer System of Seafloor Natural Gas Hydrate[J]. Environmental Geotechnics, 2019, 10: 1-10.

    Google Scholar

    [83] Ren Z, Chen J, He J, et al. Research and analysis of 30-m gravity piston corer for natural gas hydrate[J]. Marine Technology Society Journal, 2020, 54(2): 57-68. doi: 10.4031/MTSJ.54.2.5

    CrossRef Google Scholar

    [84] Ren Z, Chen J, Gao Q, et al. The research on a driving device for natural gas hydrate pressure core[J]. Energies, 2020, 13: 221. doi: 10.3390/en13010221

    CrossRef Google Scholar

    [85] Zhang P, Chen J, Gao Q, et al. Research on a temperature control device for seawater hydraulic systems based on a natural gas hydrate core sample pressure-retaining and transfer device[J]. Energies, 2019, 12: 3990. doi: 10.3390/en12203990

    CrossRef Google Scholar

    [86] Gao Q, Chen J, Liu J, et al. Research on pressure-stabilizing system for transfer device for natural gas hydrate cores[J]. Energy Science and Engineering, 2019, 8: 973-985.

    Google Scholar

    [87] 王智锋, 管志川, 许俊良. 天然气水合物深水深孔钻探取心系统研制[J]. 天然气工业, 2012, 32(5): 46-48. doi: 10.3787/j.issn.1000-0976.2012.05.012

    CrossRef Google Scholar

    [88] 肖波, 盛堰, 刘方兰. 天然气水合物样品保压转移及处理技术系统设计[J]. 海洋地质前沿, 2013, 29(10): 65-68.

    Google Scholar

    [89] 温明明, 刘俊波, 耿雪樵, 等. 天然气水合物样品转移装置卡爪机构设计[J]. 江苏船舶, 2016, 33(1): 32-34. doi: 10.3969/j.issn.1001-5388.2016.01.010

    CrossRef Google Scholar

    [90] 陈家旺, 张永雷, 孙瑜霞, 等. 天然气水合物保压转移装置的压力维持系统[J]. 海洋技术学报, 2017, 36(2): 23-27.

    Google Scholar

    [91] 耿雪樵, 孙瑜霞, 张永雷, 等. 天然气水合物保压转移的压力特性[J]. 中国资源综合利用, 2017, 35(4): 123-125. doi: 10.3969/j.issn.1008-9500.2017.04.046

    CrossRef Google Scholar

    [92] 裴学良, 任红, 吴仲华, 等. 天然气水合物岩心带压转移装置研制与现场试验[J]. 石油钻探技术, 2018, 46(3): 49-52.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(2865) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint