2021 Vol. 40, No. 2-3
Article Contents

HUANG Wei, HU Bangqi, XU Lei, LIAO Shili, LU Jingfang, SONG Weiyu, DING Xue, YU Yiyong, GUO Jianwei. Rapid in-situ assaying of deep-sea sediments by portable X-ray fluorescence spectrometry and its applicability assessment[J]. Geological Bulletin of China, 2021, 40(2-3): 423-433.
Citation: HUANG Wei, HU Bangqi, XU Lei, LIAO Shili, LU Jingfang, SONG Weiyu, DING Xue, YU Yiyong, GUO Jianwei. Rapid in-situ assaying of deep-sea sediments by portable X-ray fluorescence spectrometry and its applicability assessment[J]. Geological Bulletin of China, 2021, 40(2-3): 423-433.

Rapid in-situ assaying of deep-sea sediments by portable X-ray fluorescence spectrometry and its applicability assessment

More Information
  • The pelagic clay, diatom ooze, ferromanganese nodules and crusts covering a large area of the abyssal plains are the common types of deep-sea sediments.It is very important to detect the composition of these sediments timely and accurately for improving the efficiency and cognitive ability of marine geological survey.Based on the assay of 60 samples collected from Philippine Sea by portable X-ray fluorescence spectrometry (pXRF), combined with laboratory test results, three key parameters of stability, accuracy and correlation of 24 elements detected, and its applicability of rapid detecting of deep-sea sediments to marine geological survey was discussed.Through comprehensive comparative study, it is found that nine elements, Ca, Cu, Fe, K, P, Pb, Sr, Zn and Zr, have good stability, accuracy and correlation, and can be directly used in qualitative and even quantitative research.The three index parameters of Al, Ba, Mn, Mo, Ni, Rb, Si, Ti, Th and V are slightly lower, which can be used for qualitative research and trend analysis.The elements of Bi, Cs, Mg, Sb and Sc are not recommended to use because of their poorly testing results.The measures beneficial to acquire high precision test data include adequate and uniform sampling volume, grinding and screening after drying to a constant of wet samples, adequate compaction and flattening during packaging, increasing test time, selecting appropriate reference materials for calibration and inspection, and increasing test times for key and abnormal samples.With the increase of the type and number of deep sea samples in the future, the pXRF method will be conducive to the establishment of more accurate test methods, so as to quickly reveal the composition characteristics of samples in the field and delineate mineralization anomalies etc.In this way, it can be used as a reference for the decision-making and deployment of key offshore projects.

  • 加载中
  • [1] 拓守廷, 翦知湣. 科学大洋钻探船的回顾与展望[J]. 工程研究——跨学科视野中的工程, 2016, 8(2): 155-161.

    Google Scholar

    [2] Ryan J G, Shervais J W, Li Y, et al. Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352[J]. Chemical Geology, 2017, 451: 55-66. doi: 10.1016/j.chemgeo.2017.01.007

    CrossRef Google Scholar

    [3] Reagan M K, Pearce J A, Petronotis K, et al. Expedition 352 methods[J]. Proceedings of the International Ocean Discovery Program, 2015, 352: 1-45.

    Google Scholar

    [4] Lemière B. A review of pXRF(field portable X-ray fluorescence)applications for applied geochemistry[J]. Journal of Geochemical Exploration, 2018, 188: 350-363. doi: 10.1016/j.gexplo.2018.02.006

    CrossRef Google Scholar

    [5] 周曙光, 廖世斌, 周可法, 等. 便携式X射线荧光光谱仪在岩石样品分析中的应用研究[J]. 岩矿测试, 2018, 37(1): 56-63.

    Google Scholar

    [6] 邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤, 2015, 47(3): 589-595.

    Google Scholar

    [7] Weindorf D C, Chakraborty S, Li B, et al. Compost salinity assessment via portable X-ray fluorescence(PXRF)spectrometry[J]. Waste Management, 2018, 78: 158-163. doi: 10.1016/j.wasman.2018.05.044

    CrossRef Google Scholar

    [8] Dutkiewicz A, O'Callaghan S, Müller R D. Controls on the distribution of deep-sea sediments[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(8): 3075-3098. doi: 10.1002/2016GC006428

    CrossRef Google Scholar

    [9] Li Y H, Schoonmaker J E. Chemical Composition and Mineralogy of Marine Sediments A2-Holland, Heinrich D[C]//Turekian K K. Treatise on Geochemistry(Second Edition), Oxford: Elsevier, 2014: 1-32.

    Google Scholar

    [10] Hüneke H, Henrich R. Chapter 4-Pelagic Sedimentation in Modern and Ancient Oceans[C]//Hüneke H, Mulder T. Developments in Sedimentology. Elsevier, 2011: 63: 215-351.

    Google Scholar

    [11] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.

    Google Scholar

    [12] Berger W H, Adelseck C G, Mayer L A. Distribution of carbonate in surface sediments of the Pacific Ocean[J]. Journalof Geophysical Research, 1976, 81(15): 2617-2627. doi: 10.1029/JC081i015p02617

    CrossRef Google Scholar

    [13] Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic[J]. Paleoceanography, 2008, 23(1): 1-13.

    Google Scholar

    [14] 中华人民共和国国家标准. 海底沉积物化学分析方法[S]. 2006.

    Google Scholar

    [15] Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, Formation, and Occurrence of Polymetallic Nodules[C]//Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations, Sharma R, Cham: Springer International Publishing, 2017: 23-63.

    Google Scholar

    [16] Hein J R, Koschinsky A. Deep-Ocean Ferromanganese Crusts and Nodules[C]//Turekian K K. Treatise on Geochemistry(Second Edition). Oxford: Elsevier, 2014, 273-291.

    Google Scholar

    [17] 袁兆宪. 基于PXRF技术的露头和手标本尺度元素迁移富集规律研究[D]. 中国地质大学博士学位论文, 2014.

    Google Scholar

    [18] 吴小勇, 陈永君, 王毅民. Si-PIN探测器便携式X荧光分析仪在海洋多金属结核结壳分析中的应用[J]. 岩矿测试, 2002, 21(1): 33-36. doi: 10.3969/j.issn.0254-5357.2002.01.007

    CrossRef Google Scholar

    [19] Liao S, Tao C, Li H, et al. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0

    CrossRef Google Scholar

    [20] Gallhofer D, Lottermoser B. The Influence of Spectral Interferences on Critical Element Determination with Portable X-Ray Fluorescence(pXRF)[J]. Minerals, 2018, 8(8): 320. doi: 10.3390/min8080320

    CrossRef Google Scholar

    [21] 朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129-137.

    Google Scholar

    [22] Tighe M, Rogan G, Wilson S C, et al. The potential for portable X-ray fluorescence determination of soil copper at ancient metallurgy sites, and considerations beyond measurements of total concentrations[J]. Journal of Environmental Management, 2018, 206: 373-382.

    Google Scholar

    [23] Arne D C, Mackie R A, Jones S A. The use of property-scale portable X-ray fluorescence data in gold exploration: advantages and limitations[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 233-244. doi: 10.1144/geochem2013-233

    CrossRef Google Scholar

    [24] Mcgladdery C, Weindorf D C, Chakraborty S, et al. Elemental assessment of vegetation viaportable X-ray fluorescence(PXRF)spectrometry[J]. Journal of Environmental Management, 2018, 210: 210-225.

    Google Scholar

    [25] Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography: Methods, 2012, 10(12): 991-1003. doi: 10.4319/lom.2012.10.991

    CrossRef Google Scholar

    [26] Hall G E M, Mcclenaghan M B, Pagé L. Application of portable XRF to the direct analysis of till samples from various deposit types in Canada[J]. Geochemistry: Exploration, Environment, Analysis, 2015, 16(1): 62-84.

    Google Scholar

    [27] 杜海燕, 李凡, 吴金杰, 等. 同步辐射单能X射线空气质量衰减系数的测量[J]. 计量学报, 2019, 40(2): 333-336.

    Google Scholar

    [28] Arenas-Islas D, Huerta-Diaz M A, Norzagaray-López C O, et al. Calibration of portable X-ray fluorescence equipment for the geochemical analysis of carbonate matrices[J]. Sedimentary Geology, 2019, 391: 105517. doi: 10.1016/j.sedgeo.2019.105517

    CrossRef Google Scholar

    [29] Rouillon M, Taylor M P. Can field portable X-ray fluorescence(pXRF)produce high quality data for application in environmental contamination research?[J]. Environmental Pollution, 2016, 214: 255-264. doi: 10.1016/j.envpol.2016.03.055

    CrossRef Google Scholar

    中国大洋矿产资源研究开发协会办公室等. 中国大洋航次调查现场地质工作培训教材-西南印度洋合同区试用稿. 2016.

    Google Scholar

    赛默飞世尔科技有限公司. 尼通XL3t 950型pXRF设备对于标准物质检测限的说明. 2010.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1186) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint