Citation: | HUANG Wei, HU Bangqi, XU Lei, LIAO Shili, LU Jingfang, SONG Weiyu, DING Xue, YU Yiyong, GUO Jianwei. Rapid in-situ assaying of deep-sea sediments by portable X-ray fluorescence spectrometry and its applicability assessment[J]. Geological Bulletin of China, 2021, 40(2-3): 423-433. |
The pelagic clay, diatom ooze, ferromanganese nodules and crusts covering a large area of the abyssal plains are the common types of deep-sea sediments.It is very important to detect the composition of these sediments timely and accurately for improving the efficiency and cognitive ability of marine geological survey.Based on the assay of 60 samples collected from Philippine Sea by portable X-ray fluorescence spectrometry (pXRF), combined with laboratory test results, three key parameters of stability, accuracy and correlation of 24 elements detected, and its applicability of rapid detecting of deep-sea sediments to marine geological survey was discussed.Through comprehensive comparative study, it is found that nine elements, Ca, Cu, Fe, K, P, Pb, Sr, Zn and Zr, have good stability, accuracy and correlation, and can be directly used in qualitative and even quantitative research.The three index parameters of Al, Ba, Mn, Mo, Ni, Rb, Si, Ti, Th and V are slightly lower, which can be used for qualitative research and trend analysis.The elements of Bi, Cs, Mg, Sb and Sc are not recommended to use because of their poorly testing results.The measures beneficial to acquire high precision test data include adequate and uniform sampling volume, grinding and screening after drying to a constant of wet samples, adequate compaction and flattening during packaging, increasing test time, selecting appropriate reference materials for calibration and inspection, and increasing test times for key and abnormal samples.With the increase of the type and number of deep sea samples in the future, the pXRF method will be conducive to the establishment of more accurate test methods, so as to quickly reveal the composition characteristics of samples in the field and delineate mineralization anomalies etc.In this way, it can be used as a reference for the decision-making and deployment of key offshore projects.
[1] | 拓守廷, 翦知湣. 科学大洋钻探船的回顾与展望[J]. 工程研究——跨学科视野中的工程, 2016, 8(2): 155-161. |
[2] | Ryan J G, Shervais J W, Li Y, et al. Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352[J]. Chemical Geology, 2017, 451: 55-66. doi: 10.1016/j.chemgeo.2017.01.007 |
[3] | Reagan M K, Pearce J A, Petronotis K, et al. Expedition 352 methods[J]. Proceedings of the International Ocean Discovery Program, 2015, 352: 1-45. |
[4] | Lemière B. A review of pXRF(field portable X-ray fluorescence)applications for applied geochemistry[J]. Journal of Geochemical Exploration, 2018, 188: 350-363. doi: 10.1016/j.gexplo.2018.02.006 |
[5] | 周曙光, 廖世斌, 周可法, 等. 便携式X射线荧光光谱仪在岩石样品分析中的应用研究[J]. 岩矿测试, 2018, 37(1): 56-63. |
[6] | 邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤, 2015, 47(3): 589-595. |
[7] | Weindorf D C, Chakraborty S, Li B, et al. Compost salinity assessment via portable X-ray fluorescence(PXRF)spectrometry[J]. Waste Management, 2018, 78: 158-163. doi: 10.1016/j.wasman.2018.05.044 |
[8] | Dutkiewicz A, O'Callaghan S, Müller R D. Controls on the distribution of deep-sea sediments[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(8): 3075-3098. doi: 10.1002/2016GC006428 |
[9] | Li Y H, Schoonmaker J E. Chemical Composition and Mineralogy of Marine Sediments A2-Holland, Heinrich D[C]//Turekian K K. Treatise on Geochemistry(Second Edition), Oxford: Elsevier, 2014: 1-32. |
[10] | Hüneke H, Henrich R. Chapter 4-Pelagic Sedimentation in Modern and Ancient Oceans[C]//Hüneke H, Mulder T. Developments in Sedimentology. Elsevier, 2011: 63: 215-351. |
[11] | 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999. |
[12] | Berger W H, Adelseck C G, Mayer L A. Distribution of carbonate in surface sediments of the Pacific Ocean[J]. Journalof Geophysical Research, 1976, 81(15): 2617-2627. doi: 10.1029/JC081i015p02617 |
[13] | Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic[J]. Paleoceanography, 2008, 23(1): 1-13. |
[14] | 中华人民共和国国家标准. 海底沉积物化学分析方法[S]. 2006. |
[15] | Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, Formation, and Occurrence of Polymetallic Nodules[C]//Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations, Sharma R, Cham: Springer International Publishing, 2017: 23-63. |
[16] | Hein J R, Koschinsky A. Deep-Ocean Ferromanganese Crusts and Nodules[C]//Turekian K K. Treatise on Geochemistry(Second Edition). Oxford: Elsevier, 2014, 273-291. |
[17] | 袁兆宪. 基于PXRF技术的露头和手标本尺度元素迁移富集规律研究[D]. 中国地质大学博士学位论文, 2014. |
[18] | 吴小勇, 陈永君, 王毅民. Si-PIN探测器便携式X荧光分析仪在海洋多金属结核结壳分析中的应用[J]. 岩矿测试, 2002, 21(1): 33-36. doi: 10.3969/j.issn.0254-5357.2002.01.007 |
[19] | Liao S, Tao C, Li H, et al. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0 |
[20] | Gallhofer D, Lottermoser B. The Influence of Spectral Interferences on Critical Element Determination with Portable X-Ray Fluorescence(pXRF)[J]. Minerals, 2018, 8(8): 320. doi: 10.3390/min8080320 |
[21] | 朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129-137. |
[22] | Tighe M, Rogan G, Wilson S C, et al. The potential for portable X-ray fluorescence determination of soil copper at ancient metallurgy sites, and considerations beyond measurements of total concentrations[J]. Journal of Environmental Management, 2018, 206: 373-382. |
[23] | Arne D C, Mackie R A, Jones S A. The use of property-scale portable X-ray fluorescence data in gold exploration: advantages and limitations[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 233-244. doi: 10.1144/geochem2013-233 |
[24] | Mcgladdery C, Weindorf D C, Chakraborty S, et al. Elemental assessment of vegetation viaportable X-ray fluorescence(PXRF)spectrometry[J]. Journal of Environmental Management, 2018, 210: 210-225. |
[25] | Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography: Methods, 2012, 10(12): 991-1003. doi: 10.4319/lom.2012.10.991 |
[26] | Hall G E M, Mcclenaghan M B, Pagé L. Application of portable XRF to the direct analysis of till samples from various deposit types in Canada[J]. Geochemistry: Exploration, Environment, Analysis, 2015, 16(1): 62-84. |
[27] | 杜海燕, 李凡, 吴金杰, 等. 同步辐射单能X射线空气质量衰减系数的测量[J]. 计量学报, 2019, 40(2): 333-336. |
[28] | Arenas-Islas D, Huerta-Diaz M A, Norzagaray-López C O, et al. Calibration of portable X-ray fluorescence equipment for the geochemical analysis of carbonate matrices[J]. Sedimentary Geology, 2019, 391: 105517. doi: 10.1016/j.sedgeo.2019.105517 |
[29] | Rouillon M, Taylor M P. Can field portable X-ray fluorescence(pXRF)produce high quality data for application in environmental contamination research?[J]. Environmental Pollution, 2016, 214: 255-264. doi: 10.1016/j.envpol.2016.03.055 |
① | 中国大洋矿产资源研究开发协会办公室等. 中国大洋航次调查现场地质工作培训教材-西南印度洋合同区试用稿. 2016. |
② | 赛默飞世尔科技有限公司. 尼通XL3t 950型pXRF设备对于标准物质检测限的说明. 2010. |
Variation coefficient distribution of detected elements for four types of sedimentary samples
Relative error distribution of detected elements for four types of sedimentary samples
Elements with correlation coefficient higher than 0.99
Elements with correlation coefficient between 0.90 and 0.99
Elements with correlation coefficient less than 0.90
Correlation between Ti content of four types of deep sea sedimentary samples detected by pXRF and that of conventional laboratory analysis