2021 Vol. 40, No. 5
Article Contents

GAO Jianweng, GONG Jingjing, YANG Jianzhou, TANG Shixin, MA Shengming. Spatial distribution and ecological risk assessment of heavy metal pollution in the soil of Limu Mountain- Wanling Town, Qiongzhong, Hainan Province[J]. Geological Bulletin of China, 2021, 40(5): 807-816.
Citation: GAO Jianweng, GONG Jingjing, YANG Jianzhou, TANG Shixin, MA Shengming. Spatial distribution and ecological risk assessment of heavy metal pollution in the soil of Limu Mountain- Wanling Town, Qiongzhong, Hainan Province[J]. Geological Bulletin of China, 2021, 40(5): 807-816.

Spatial distribution and ecological risk assessment of heavy metal pollution in the soil of Limu Mountain- Wanling Town, Qiongzhong, Hainan Province

More Information
  • In order to understand the spatial distribution and ecological risk assessment of heavy metal pollution in the soil of Limu Mountain-Wanling Town, Qiongzhong, 2682 topsoil samples(0~20 cm) and 304 middle-soil layer samples(80~100 cm) and subsoil samples(180~200 cm) were respectively collected to analyze for 8 heavy metal elements(Cu, Pb, Zn, Cr, Ni, Cd, As and Hg).Based on the metals' distribution, geoaccumulation index and potential ecological hazard index, multivariate statistics was conducted to evaluate the potential ecological risks.Results show that the mean values of 8 heavy metal elements in topsoils are higher than the soil background values of Hainan, showing different degree of accumulation effect.The accumulation of heavy metal in topsoils is associated with different land-use types and various planting patterns.Vertically, the contents of Pb、Zn、Cu、Cr、Ni decrease a little with depth, but contents of Cd, As and Hg are characterized by surface accumulation.Pearson correlation analysis and factor analysis suggest that Cu, Cr and Ni in the topsoils are mainly controlled by geological background, others are controlled by geological background and human activities.The mean geoaccumulation indexes of other heavy metal elements except for Hg(0.08) are less than 0.The ecological risk assessment show that Cd and Hg are the main hazard elements, Cd is mainly of slight to medium hazard, Hg is of medium to strong risk, and the hazard indexes of the other elements are all slight.The overall potential ecological hazard index of 96% of the soil is below medium hazard.

  • 加载中
  • [1] Ali L, Rashid A, Khattak S A, et al. Geochemical control of potential toxic elements(PTEs), associated risk exposure and source apportionment of agricultural soil in Southern Chitral, Pakistan[J]. Microchemical Journal, 2019, 147: 516-523. doi: 10.1016/j.microc.2019.03.034

    CrossRef Google Scholar

    [2] Timofeev I, Kosheleva N, Kasimov N. Health risk assessment based on the contents of potentially toxic elements in urban soils of Darkhan, Mongolia[J]. Journal of Environmental Management, 2019, 242: 279-289.

    Google Scholar

    [3] Cao S, Duan X, Zhao X, et al. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China[J]. Science of the Total Environment, 2013, 472C: 1001-1009.

    Google Scholar

    [4] Zhang X, Yang L, Li Y, et al. Impacts of lead/zinc mining and smelting on the environment and human health in China[J]. Environmental Monitoring&Assessment, 2012, 184(4): 2261-2273.

    Google Scholar

    [5] 刘广深, 曾毅强, 洪业汤. 陆地生态系统中汞的迁移与富集研究的重要意义[J]. 矿物岩石地球化学通讯, 1994, (4): 216-217.

    Google Scholar

    [6] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3): 265-306.

    Google Scholar

    [7] Lamb D T, Hui M, Megharaj M, et al. Heavy metal(Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and longterm contaminated soils[J]. Journal of Hazardous Materials, 2009, 171: 1150-1158. doi: 10.1016/j.jhazmat.2009.06.124

    CrossRef Google Scholar

    [8] Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicology&Environmental Safety, 2016, 126: 111-121.

    Google Scholar

    [9] 刘瑞平, 徐友宁, 张江华, 等. 青藏高原典型金属矿山河流重金属污染对比[J]. 地质通报, 2018, 37(12): 2154-2168.

    Google Scholar

    [10] 张江华, 王葵颖, 徐友宁, 等. 小秦岭太峪水系沉积物重金属污染生态危害评价[J]. 地质通报, 2018, 37(12): 2224-2232.

    Google Scholar

    [11] 李福燕, 李许明, 吴鹏飞, 等. 海南省农用地土壤重金属含量与土壤有机质及pH的相关性[J]. 土壤, 2009, 41(1): 49-53. doi: 10.3321/j.issn:0253-9829.2009.01.009

    CrossRef Google Scholar

    [12] 何玉生. 海口城市土壤重金属污染特征与生态风险评估[J]. 生态学杂志, 2014, 33(2): 421-428.

    Google Scholar

    [13] 徐方建, 闫慧梅, 田旭, 等. 海南岛东部陆架表层沉积物重金属污染评价[J]. 中国环境科学, 2016, 36(5): 252-261.

    Google Scholar

    [14] Wang A, Wang Q, Li J, et al. Geo-statistical and multivariate analyses of potentially toxic elements' distribution in the soil of Hainan Island(China): A comparison between the topsoil and subsoil at a regional scale[J]. Journal of Geochemical Exploration, 2019, 197: 48-59. doi: 10.1016/j.gexplo.2018.11.008

    CrossRef Google Scholar

    [15] 湖北省地质调查院. 生态地球化学评价样品分析方法和技术要求(试行) DD 2005-03[S]. 2005.

    Google Scholar

    [16] 中国地质调查局南京地质调查中心. 多目标区域地球化学调查规范(1: 250000) DZ/T 0258-2014[S]. 2014.

    Google Scholar

    [17] 中国地质大学(北京), 国土资源部土地整理中心, 中国地质科学院地球物理地球化学勘查研究所, 等. 土地质量地球化学评估技术要求(试行) DD2008-06[S]. 2008.

    Google Scholar

    [18] 吴燕玉, 周启星. 制定我国土壤环境标准(汞、镉、铅和砷)的探讨[J]. 应用生态学报, 1991, 2(4): 344-349.

    Google Scholar

    [19] Muller G. Index of geoaccumulation in sediments of the Rhime River[J]. Geological Journals, 1969, 2: 109-118.

    Google Scholar

    [20] 鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(6): 1625-1636.

    Google Scholar

    [21] F rstner U, Ahlf W, Calmano W. Sediment quality objectives and criteria development in Germany[J]. Water Science&Technology, 1993, 28(8): 307-316.

    Google Scholar

    [22] 崔邢涛, 栾文楼, 牛彦斌, 等. 唐山城市土壤重金属污染及潜在生态危害评价[J]. 中国地质, 2011, 38(5): 1379-1386. doi: 10.3969/j.issn.1000-3657.2011.05.024

    CrossRef Google Scholar

    [23] 代杰瑞, 庞绪贵, 宋建华, 等. 山东淄博城市和近郊土壤元素地球化学特征及生态风险研究[J]. 中国地质, 2018, 45(3): 617-627.

    Google Scholar

    [24] 管后春, 李运怀, 彭苗芝, 等. 黄山城市土壤重金属污染及其潜在生态风险评价[J]. 中国地质, 2013, 40(6): 1949-1958.

    Google Scholar

    [25] Hakanson L. An ecological risk index for aquatic pollution control a sediment to logical approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8

    CrossRef Google Scholar

    [26] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030

    CrossRef Google Scholar

    [27] Wang A, Wang Q, Li J, et al. Geo-statistical and multivariate analyses of potentially toxic elements' distribution in the soil of Hainan Island(China): A comparison between the topsoil and subsoil at a regional scale[J]. Journal of Geochemical Exploration, 2018, 197: 48-59.

    Google Scholar

    [28] 张素荣, 王昌宇, 刘继红, 等. 雄安新区西南部土壤重金属污染特征及生态风险评价[J/OL]. [2021-04-25]. 地学前缘, https://doi.org/10.13745/j.esf.sf.2020.7.1.

    Google Scholar

    [29] Adrie V, Bert H. Sources of Cd, Cu, Pb and Zn in biowaste[J]. Sci. Total Environ., 2002, 300: 87-98. doi: 10.1016/S0048-9697(01)01103-2

    CrossRef Google Scholar

    [30] Ottesen R T, Birke M, Finne T E, et al. Mercury in European agricultural and grazing land soils[J]. Applied Geochemistry, 2013, 33(Complete): 1-12.

    Google Scholar

    [31] Martin M H. The Heavy Metal Elements: Chemistry, Environmental Impact and Health Effects[J]. Metais Pesados, 1990, 69(4): 354-356.

    Google Scholar

    [32] Garcia&Malz I, Millan E. Heavy metal contamination analysis of road soilsand grassesfrom Gipuzkoa(Spain)[J]. Environmental Technology, 1996, 17(7): 763-770. doi: 10.1080/09593331708616443

    CrossRef Google Scholar

    [33] Gray C W, McLaren R G, Roberts A H C. The effect of long-term phosphatic fertilizer applications on the amounts and, forms of cadmium in soils under pasture in New Zealand[J]. Nutrient Cycling in Agroeco systems, 1999, 54: 267-277. doi: 10.1023/A:1009883010490

    CrossRef Google Scholar

    [34] Sun Y, Zhou Q, Xie X, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China[J]. Journal of Hazardous Materials, 2010, 174(1): 455-462.

    Google Scholar

    [35] Kuo T H, Chang C F, Urba A, et al. Atmospheric gaseous mercury in Northern Taiwan[J]. Science of the Total Environment, 2006, 368(1): 10-18. doi: 10.1016/j.scitotenv.2005.10.017

    CrossRef Google Scholar

    [36] Dy W, Xj S, Sq W. Accumulation and transformation of atmospheric mercury in soil[J]. Science of the Total Environment, 2003, 304(1/3): 209-214.

    Google Scholar

    [37] 曾希柏, 苏世鸣, 吴翠霞, 等. 农田土壤中砷的来源及调控研究与展望[J]. 中国农业科技导报, 2014, 16(2): 85-91.

    Google Scholar

    中国地质调查局. 中国耕地地球化学调查报告(2015年). 国土资源部中国地质调查局, 2015.

    Google Scholar

    傅杨荣, 杨奕, 何玉生, 等. 中华人民共和国多目标区域地球化学调查报告-海南岛. 海南省地质调查院, 2008.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(9)

Article Metrics

Article views(952) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint