Citation: | ZHOU Bin, QIAO Xinxing, HAN Kui, PAN Liang, WANG Feng, FAN Peng. Discovery of the Late Triassic-Early Jurassic volcanic rocks of Xionglai Formation and constraint on the tectonic evolution of Zhikong-Sumdo Paleo-Tethyan orogen in the Riduo area of Tibet[J]. Geological Bulletin of China, 2021, 40(8): 1330-1343. |
Zircon U-Pb dating, geochemical and Hf isotope analyses were carried out on the volcanic rocks of Xionglai Formation newly discovered in Riduo area, the eastern part of the Gangdese magmatic belt.The volcanic rocks of Xionglai Formation in Riduo area in the eastern part of Lhasa massif are mainly intermediate basic lava and pyroclastic rock.Zircon U-Pb dating of andesite and basaltic andesite yields weighted mean ages of 201.3 ±6.0 Ma and 184.5 ±4.4 Ma respectively, indicating that the Xionglai Formation volcanic rocks were formed in the Late Triassic-Early Jurassic.Geochemically, the basic volcanic rocks are characterized by low SiO2(48.53%~49.92%), high MgO(10.68%~11.43%), Mg#(72.67), Cr(224.7×10-6~347.8×10-6), and Ni(90.1×10-6~109.7×10-6), enriched in large ion lithophile elements(Rb, Th, U, Sr) and light rare earth elements(LREEs), and depleted in high field strength elements(Nb, Ta, P, Ti).The intermediate volcanic rocks are characterized by high SiO2(53.93%~60.54%), Al2O3(14.74%~16.12%), low MgO(2.45%~8.12%).They are enriched in light rare earth elements(LREEs), large ion lithophile elements(LILEs, e.g., Rb, Th, U and Ba), but depleted in high-field strength elements(e.g., Nb, Ta, P, Ti).Isotope analyses reveal that most samples have low zircon εHf(t) (-12.25~-3.64), and the values of tDMC range from 1621 Ma to 2004 Ma.Combining with regional geology, geochronological, geochemical and zircon Hf isotopic data, it is proposed that the Late Triassic-Early Jurassic volcanic rocks of Xionglai Formation were formed in post-collision tectonic setting as a magmatic response to post-collision and extension of Zhikong-Sumdo Paleo-Tethyan orogen.The basic volcanic rocks were derived from partial melting of a depleted lithospheric mantle, while the intermediate volcanic rocks were derived from partial melting of ancient lower crustal material and contaminated by ancient lower crust during ascending.
[1] | 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 3-15. |
[2] | Zhu D C, Zhao Z D, Niu Y L, et al. The origin and Pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. |
[3] | 杨经绥, 许志琴, 耿全如, 等. 中国境内可能存在一条新的高压/超高压(?) 变质带——青藏高原拉萨地体中发现榴辉岩带[J]. 地质学报, 2006, 80(12): 1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001 |
[4] | 许志琴, 杨经绥, 李文昌, 等. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 2013, 29(6): 1847-1860. |
[5] | Cheng H, Liu Y M, Vervoort J D, et al. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-TethysOcean in the Lhasa terrane, Tibet[J]. Gondwana Research, 2015, 28(4): 1482-1499. doi: 10.1016/j.gr.2014.09.017 |
[6] | Weller O M, St-Onge M R, Rayner N, et al. U-Pb zircon geochronology and phase equilibria modelling of a mafic eclogite from the Sumdo complex of south-east Tibet: Insights into prograde zircon growth and the assembly of the Tibetan plateau[J]. Lithos, 2016, 262: 729-741. doi: 10.1016/j.lithos.2016.06.005 |
[7] | Yu Y P, Xie C M, Fan J J, et al. Zircon U-Pb geochronology and geochemistry of Early Jurassic granodiorites in Sumdo area, Tibet: Constraints on petrogenesis and the evolution of the Neo-Tethyan Ocean[J]. Lithos, 2018, 320/321: 134-143. doi: 10.1016/j.lithos.2018.09.006 |
[8] | Wang B, Xie C M, Fan J J, et al. Genesis and tectonic setting of Middle Permian OIB-type mafic rocks in the Sumdo area, southern Lhasa terrane[J]. Lithos, 2019, 324/325: 429-438. doi: 10.1016/j.lithos.2018.11.015 |
[9] | 解超明, 李才, 李光明, 等. 西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质, 2020, 40(2): 1-13. |
[10] | 李化启, 蔡志慧, 陈松永, 等. 拉萨地体中的印支造山事件及年代学证据[J]. 岩石学报, 2008, 24(7): 1595-1604. |
[11] | 王立全, 潘桂堂, 丁俊, 等. 青藏高原及邻区地质图及说明书(1: 1 500 000)[M]. 北京: 地质出版社, 2013: 9-48. |
[12] | 韩奎, 周斌, 乔新星, 等. 拉萨地块南缘日多地区叶巴组火山岩地球化学、年代学、锆石Lu-Hf同位素特征及其地质意义[J]. 地质通报, 2018, 37(8): 1554-1570. |
[13] | Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-117. doi: 10.1016/j.chemgeo.2007.10.003 |
[14] | 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 |
[15] | Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publicatin, 1989, 42(1): 313-345. |
[16] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. |
[17] | Vervoort J D, Patchett P J, Gehrels G E, et al. Constraints on early earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627. doi: 10.1038/379624a0 |
[18] | Dupuy C, Dostal J. Trace element geochemistry of some continental tholeiites[J]. Earth and Planetary Science Letters, 1984, 67(1): 61-69. doi: 10.1016/0012-821X(84)90038-4 |
[19] | Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891 |
[20] | Huang Y M, Hawkesworth C, Smith I, et al. Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel New Zealand: Implications for Mantle Enrichment Processes[J]. Chemical Geology, 2000, 64(3/4): 219-238. |
[21] | Jiang Y H, Jiang S Y, Dai B Z, et al. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province. Southeast China: Implications for a Continental Are to Rifting[J]. Lithos, 2009, 107(3/4): 185-204. |
[22] | 夏林圻, 夏祖春, 李向民, 等. 中国中西部及邻区大陆板内火山作用[M]. 北京: 科学出版社, 2013. |
[23] | 徐夕生, 邱检生. 火成岩岩石学[M]. 北京: 科学出版社, 2010. |
[24] | Ringwood A E. Composition and Petrology of the Earth's Mantle[M]. New York: McGraw-Hill, 1975. |
[25] | Bea F, Arzamastsev A, Montero P, et al. Aonmalous alkalin rocks of Soustov, Kola: evidence of mantle derived matasomatic fluids affecting crustal materials[J]. Contrib Mineral Petrol, 2001, 140: 554-566. doi: 10.1007/s004100000211 |
[26] | 李永军, 李甘雨, 佟丽莉, 等. 玄武岩类形成的大地构造环境Ta、Hf、Th、La、Zr、Nb比值对比判别[J]. 地球科学与环境学报, 2015, 37(3): 14-21. doi: 10.3969/j.issn.1672-6561.2015.03.004 |
[27] | 夏林圻, 夏祖春, 徐学义, 等. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1): 77-87. doi: 10.3969/j.issn.1000-6524.2007.01.011 |
[28] | Muller D, Groves D I. Pottassic igneous rocks and associated gold-copper mineralization[M]. Berlin: Springer, 1997: 11-40. |
[29] | 付燕刚. 西藏拉萨地块南部新特提斯洋俯冲成岩成矿作用[D]. 中国地质科学院博士学位论文, 2017. |
[30] | 纪伟强, 吴福元, 锺孙霖, 等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学(D辑), 2009, (7): 849-871. |
[31] | 孟元库. 藏南冈底斯中段南缘构造演化[D]. 中国地质科学院博士学位论文, 2016. |
[32] | Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9): 745-748. doi: 10.1130/G22725.1 |
[33] | 张宏飞, 徐旺春, 郭建秋, 等. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据[J]. 岩石学报, 2007, 23(6): 1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 |
[34] | 曲晓波, 辛洪波, 徐文艺. 三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿容矿火成岩时代的重新厘定[J]. 矿床地质, 2007, 26: 512-518. doi: 10.3969/j.issn.0258-7106.2007.05.003 |
[35] | 谭陈诚. 日喀则东嘎乡冈底斯岩体的形成年代及成因[D]. 中国地质大学(北京) 硕士学位论文, 2012. |
[36] | 邱检生, 王睿强, 赵姣龙, 等. 冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示: 以日喀则东嘎岩体为例[J]. 岩石学报, 2015, 31(12): 3569-3580. |
[37] | 曾云川. 拉萨地块晚三叠世-晚侏罗纪岩浆-构造演化[D]. 中国科学院大学博士学位论文, 2017. |
[38] | 王程, 魏启荣, 刘小念, 等. 冈底斯印支晚期后碰撞花岗岩: 锆石U-Pb年代学及岩石地球化学证据[J]. 地球科学, 2014, 39(9): 1277-1288. |
[39] | 于云鹏. 藏南松多地区二叠纪-侏罗纪岩浆作用及构造意义[D]. 吉林大学博士学位论文, 2020. |
[40] | 周斌, 潘亮, 韩奎, 等. 西藏拉萨-日多晚侏罗世-早白垩世盆地顺层剪切构造及其地质意义[J]. 沉积与特提斯地质, 2020, 40(2): 65-74. |
[41] | Hunen J V, Allen M B. Continental collision and slab break-off: a comparison of 3-D numerical models with observation[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 27-37. |
[42] | Davies J H, Blanckenburg F. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129: 85-102. doi: 10.1016/0012-821X(94)00237-S |
[43] | 李化启, 许志琴, 杨经绥, 等. 拉萨地体内松多榴辉岩的同碰撞折返: 来自构造变形和40Ar-39Ar年代学的证据[J]. 地学前缘, 2011, 18(3): 66-78. |
[44] | 王斌, 解超明, 李才, 等. 青藏高原松多地区温木朗蛇绿岩的发现及其地质意义[J]. 地质通报, 2017, 36(11): 2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017 |
[45] | 张旗. 碰撞与花岗岩-碰撞是构造事件, 不是构造环境[J]. 岩石矿物学杂志, 2012, 31(5): 745-749. doi: 10.3969/j.issn.1000-6524.2012.05.012 |
[46] | van de Zedde D M A, Wortel M J R. Shallow slab detachment as a transient source of heat at midlithospheric depths[J]. Tectonics, 2001, 20(6): 868-882. doi: 10.1029/2001TC900018 |
① | 朱立东,王刚,杨文光,等.西藏唐加地区4幅1:5万区域地质调查成果报告.成都理工大学,2019. |
② | 解超明,于云鹏,董宇超,等.西藏松多地区4幅1:5万区域地质调查成果报告.吉林大学,2019. |
③ | 周斌,韩奎,潘亮,等.西藏日多地区3幅1:5万区域地质调查成果报告.陕西省地质调查中心,2019. |
Tectonic position(a)and geological map(b)of Riduo area on the southern Lhasa terrane
Profile of Xionglai Formation volcanic rocks in the Riduo area
Outcrop(a, b)and micrographs(c, d)of Xionglai Formation volcanic rocks in the Riduo area
Zircon CL images(a)and U-Pb concordia diagrams(b, c)of Xionglai Formation volcanic rocks in Riduo area
TAS(a)and AFM diagrams(b)of Xionglai Formation volcanic rocks in the Riduo area
Chondrite-normalized REE patterns(a)and primitive mantle(PM)-normalized multi-element patterns(b)of Xionglai Formation volcanic rocks
La-La/Sm plot for Xionglai Formation volcanic rocks
Sm-Sm/Yb(a)and La/Sm-Sm/Yb(b)diagrams of Xionglai Formation basalt
Diagram of εHf(t)-age (a)and histogram of tDMC(b)of Xionglai Formation volcanic rocks
Tectonic discrimination diagrams of Xionglai Formation volcanic rocks in the Riduo area