Citation: | TAO Gang, YANG Yuanjiang, YANG Wenguang, ZHU Lidong, QI Xin, LU Zhiyou, HE Bi. Petrogenesis and tectonic significance of the Yari granites in the west-middle segment of the Lhasa Terrane Tibet Evidences from geochronology geochemistry and Hf isotope[J]. Geological Bulletin of China, 2021, 40(8): 1344-1356. |
More geological researchers are focusing on the Mesozoic magmatic activities of Lhasa terrane, which is significant for the evolution of the Lhasa terrane. But the petrogenesis and magmatic origin of the Late Jurassic Yari Granites(YRG) remain poorly constrained. This study presents petrology, zircon U-Pb ages, geochemistry, and Lu-Hf isotopic data of YRG. The zircon U-Pb age of the pluton is 152.1±1.5 Ma, indicating that it was formed in the Late Jurassic. The YRG are mainly adamellite characterized by high silicon (SiO2=73.55%~74.19%), rich alkali, peraluminous and poor MgO, MnO and P2O5(0.12%~0.14%). It belongs to the series of high potassium calc-alkaline with high degree of differentiation. It is characterized by ΣREE of 104.12×10-6~247.22×10-6, (La/Yb) N of 32.14~51.03, enrichment of light rare earth elements(ΣLREE), obvious negative Eu anomaly (δEu=0.54~0.68) and right-dipping distribution pattern of rare earth elements. It is enriched in Rb, Th, U and other large ion lithophile elements, and depleted in Nb, Ti. It belongs to highly differentiated S-type granite. Its petrology, geochronology and geochemistry indicate that the double subduction of the Neo-Tethys' northward subduction and Bangong-Nujiang Ocean' southward subduction led to the collision between the Gandese micro-continent and Chayu magmatic arc. The YRG were highly fractionated S-type adamellite and the source area might be related to the partial melting of mudstone with greywacke under the tectonic decompression settings. It is proposed that during the Late Jurassic, the Lhasa terrane area experienced a tectonic transformation from subduction to collision.
[1] | 董国臣, 莫宣学, 赵志丹, 等. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据[J]. 岩石学报, 2006, 22(4): 835-844. |
[2] | Hou Z Q, Duan L, Lu Y, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110: 1541-1575. doi: 10.2113/econgeo.110.6.1541 |
[3] | 纪伟强, 吴福元, 锺孙霖, 等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学(D辑), 2009, 39(7): 849-871. |
[4] | 王嘉星, 刘治博, 李海峰, 等. 西藏班公湖-怒江结合带中段早白垩世花岗闪长斑岩年龄, Hf同位素及地球化学特征[J]. 地质通报, 2020, 39(5): 608-620. |
[5] | 刘治博, 李海峰, 高轲, 等. 西藏班公湖-怒江缝合带中段去申拉组火山岩锆石U-Pb年龄及Hf同位素特征[J]. 地质通报, 2019, 38(6): 1018-1027. |
[6] | Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255. |
[7] | 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 |
[8] | 朱弟成, 潘桂堂, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013 |
[9] | Ma S W, Meng Y K, Xu Z Q, et al. The Discovery of Late Triassic Mylonitic Granite and Geologicsignificance in the Middle Gangdese Batholiths, Southern Tibet[J]. Journal of Geodynamics, 2017, 104(3): 49-64. |
[10] | 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. |
[11] | 付燕刚, 唐菊兴, 胡古月, 等. 新特提斯洋早期俯冲的岩浆岩记录及其成矿——西藏日喀则西北部花岗岩类锆石U-Pb年龄及Hf同位素[J]. 地质通报, 2018, 37(6): 1026-1036. |
[12] | 钟云, 夏斌, 刘维亮, 等. 西藏南冈底斯带拢布村花岗岩LA-ICP-MS锆石U-Pb年龄及其成因[J]. 地质通报, 2013, 32(9): 28-36. |
[13] | Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(6): 1429-1454. |
[14] | 计文化, 陈守建, 赵振华, 等. 西藏冈底斯中段晚侏罗-早白垩世花岗岩特征[J]. 资源调查与环境, 2006, 7(4): 277-285. doi: 10.3969/j.issn.1671-4814.2006.04.005 |
[15] | Pan G T, Ding J, Yao D S, et al. Guidebook of 1: 1 500 000 Geological Map of the Qinghai-Xizang(Tibet) Plateau and Ajacent Areas[M]. Chengdu: Chengdu Cartographic Publishing House, 2004. |
[16] | Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 |
[17] | Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324. |
[18] | Blichert-Toft J, Chauvel C, Albarède F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J]. Contributions to Mineralogy & Petrology, 1997, 127(3): 248-260. |
[19] | Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf Isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3): 237-269. |
[20] | Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4): 423-439. |
[21] | 秦臻, 佘朋涛, 易鹏飞, 等. 西藏冈底斯带昂仁县差绒-丁欧复式花岗岩的成因: 锆石U-Pb年代学及地球化学制约[J]. 地质论评, 2018, 64(6): 1557-1574. |
[22] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. |
[23] | 李昌年. 火成岩微量元素岩石学[M]. 武汉: 中国地质大学出版社, 1992: 101-113. |
[24] | 王森, 张达, Vatuva A, 等. 福建龙岩大洋-莒舟花岗岩地球化学、年代学、铪同位素特征及其地质意义[J]. 地球化学, 2015, 44(5): 450-468. doi: 10.3969/j.issn.0379-1726.2015.05.005 |
[25] | 陈佩嘉, 戴朝成, 黄成, 等. 乌拉山地区古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义[J]. 中国地质, 2017, 44(5): 959-973. |
[26] | 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9): 981-992. doi: 10.3321/j.issn:0023-074X.2007.09.001 |
[27] | Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Trans Royal Soc Edinburgh: Earth Science, 1992, 83: 1-26. doi: 10.1017/S0263593300007720 |
[28] | Chappell B W. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551. doi: 10.1016/S0024-4937(98)00086-3 |
[29] | Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1 |
[30] | Li X H, Chen Z G, Liu D Y, et al. Jurassic gabbro-granite-syenite suites from southern Jiangxi Province, SE China: age, origin and tectonic significance[J]. Int. Geol. Rev., 2003, 45: 898-921. doi: 10.2747/0020-6814.45.10.898 |
[31] | Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma[J]. Precambrian Research, 2003, 122: 45-83. doi: 10.1016/S0301-9268(02)00207-3 |
[32] | Lee C T A, Morton D M. High silica granites: Terminal porosity and crystal settling in shallow magma chambers[J]. Earth & Planetary Science Letters, 2015, 409: 23-31. |
[33] | 张永明, 裴先治, 李佐臣, 等. 青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(5): 742-756. |
[34] | 史仁灯. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J]. 科学通报, 2007, 52(2): 223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016 |
[35] | 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J]. 地质通报, 2008, 27(4): 458-468. doi: 10.3969/j.issn.1671-2552.2008.04.003 |
[36] | 耿全如, 潘桂棠, 王立全, 等. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报, 2011, 30(8): 1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013 |
[37] | 杜德道, 曲晓明, 王根厚, 等. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报, 2011, 27(7): 1993-2002. |
[38] | 高顺宝, 郑有业, 王进寿, 等. 西藏班戈地区侵入岩年代学和地球化学: 对班公湖-怒江洋盆演化时限的制约[J]. 岩石学报, 2011, 27(7): 1973-1982. |
[39] | Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168(3): 144-159. |
[40] | 陶刚, 李智武, 朱利东, 等. 羌塘地体南缘改则格列戈阿尔辉长岩锆石U-Pb年代学、地球化学及地质意义[J]. 地质论评, 2016, 62(5): 1149-1165. |
[41] | 莫宣学. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 |
[42] | 朱弟成, 潘桂棠, 莫宣学, 等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 2006, 22(3): 534-546. |
[43] | Pearce J, Aharris N B, Wtindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 |
[44] | 卢书炜, 任建德, 白国典, 等. 西藏尼玛县南部中晚侏罗世松木果强过铝花岗岩带的发现及其意义[J]. 中国地质, 2006, 33(2): 332-339. doi: 10.3969/j.issn.1000-3657.2006.02.012 |
[45] | 闫晶晶, 赵志丹, 刘栋, 等. 西藏中拉萨地块晚侏罗世许如错花岗岩地球化学与岩石成因[J]. 岩石学报, 2017, 33(8): 2437-2453. |
[46] | 和钟铧, 杨德明, 王天武, 等. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. 吉林大学学报(地球科学版), 2005, 35(3): 302-307. |
① | 成都理工大学. 中华人民共和国1: 25万措勤县幅区域地质调查报告. 2005. |
Tectonic division of the Tibet (a) and simplified geological map of the Yari Granites(YRG)
Field and microphotographs of YRG
CL images of typical zircons of YRG
Zircon U-Pb concordia diagram of YRG
Diagrams of TAS (a) and SiO2-K2O (b) for YRG
Diagram of A/CNK-A/NK for YRG
Chondrite-normalized REE patterns (a) and primitive mantle-normalized multielement diagram (b) for YRG
Discrimination diagrams of YRG
Diagram of zircon ages-εHf(t) (a) and Rb/Sr-Rb/Ba discrimination diagram(b)
Y-Nb(a) and (Y+Nb)-Rb(b) discrimination diagrams for the tectonic interpretation of YRG