2021 Vol. 30, No. 2
Article Contents

GUAN Jian, FANG Shi. CONCEPT AND HEAT TRANSFER MECHANISM OF GEOTHERMAL SYSTEM: A Review[J]. Geology and Resources, 2021, 30(2): 207-213, 206. doi: 10.13686/j.cnki.dzyzy.2021.02.013
Citation: GUAN Jian, FANG Shi. CONCEPT AND HEAT TRANSFER MECHANISM OF GEOTHERMAL SYSTEM: A Review[J]. Geology and Resources, 2021, 30(2): 207-213, 206. doi: 10.13686/j.cnki.dzyzy.2021.02.013

CONCEPT AND HEAT TRANSFER MECHANISM OF GEOTHERMAL SYSTEM: A Review

More Information
  • Geothermal energy, as a safe, stable and low-cost clean power resource, has been highly recommended in recent years. Geothermal system, the basic unit for the study of geothermal genesis, can be divided into 2 types including heat conduction and heat convection, and further subdivided into 5 subtypes of sedimentary basin, geopressure, dry hot rock, magmatic intrusion and deep circulation in terms of geological environment and heat transfer mode. This paper reviews the concept and research history of geothermal system, and discusses the main controlling factors and heat transfer mechanism of the two types of geothermal system.

  • 加载中
  • [1] 苏逊卿. 渭河盆地地热资源概况及应用研究[J]. 石化技术, 2017, 24(9): 297. doi: 10.3969/j.issn.1006-0235.2017.09.255

    CrossRef Google Scholar

    Su X Q. Survey and application of geothermal resources in Weihe Basin[J]. Petrochemical Industry Technology, 2017, 24(9): 297. (in Chinese) doi: 10.3969/j.issn.1006-0235.2017.09.255

    CrossRef Google Scholar

    [2] Miller A R, Densmore C D, Degens E T, et al. Hot brines and recent iron deposits in deeps of the Red Sea[J]. Geochimica et Cosmochimica Acta, 1966, 30(3): 341-350, IN1, 351-359. doi: 10.1016/0016-7037(66)90007-X

    CrossRef Google Scholar

    [3] 里巴克, 米夫尔. 地热系统: 原理和典型地热系统分析[M]. 北京大学地质学系地热研究室, 译. 北京: 地质出版社, 1981: 1-6.

    Google Scholar

    Rybach L, Miffler L J P. Geothermal systems principles and case histories[M]. Geothermal Research Office, Department of Geology, Peking University, trans. Beijing: Geological Publishing House, 1981: 1-6.

    Google Scholar

    [4] Hochstein M P. Classification and assessment of geothermal resources[C]//Small Geothermal Resources: A Guide to Development and Utilization. New York: UNITAR, 1990: 31-57.

    Google Scholar

    [5] 宾德智. 《地热资源地质勘查规范》GB/T 11615-2010实施中应关注的一些问题[J]. 地热能, 2011(3): 29-32.

    Google Scholar

    Bin D Z. Some issues that should be paid attention to in the implementation of "Geothermal Resources Geological Prospecting Specification" GB/T11615-2010[J]. Geothermal Energy, 2011(3): 29-32. (in Chinese)

    Google Scholar

    [6] 朱焕来. 松辽盆地北部沉积盆地型地热资源研究[D]. 大庆: 东北石油大学, 2011.

    Google Scholar

    Zhu H L. Research on the sedimentary geothermal resources in North Songliao Basin[D]. Daqing: Northeast Petroleum University, 2011.

    Google Scholar

    [7] 汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015: 1-6.

    Google Scholar

    Wang J Y. Geothermics and its applications[M]. Beijing: Science Press, 2015: 1-6.

    Google Scholar

    [8] White D E. Some principles of geyser activity, mainly from Steamboat Springs, Nevada[J]. American Journal of Science, 1967, 265(8): 641-684. doi: 10.2475/ajs.265.8.641

    CrossRef Google Scholar

    [9] White D E. Characteristics of geothermal resources[C]//Kruger P, Otte C. Geothermal Energy: Resources, Production, Stimulation. Stanford, CA: Stanford University Press, 1973: 69-94.

    Google Scholar

    [10] Jones P H. Hydrology of Neogene deposits in the northern Gulf of Mexico basin[D]. Baton Rouge: Louisiana State University, 1968.

    Google Scholar

    [11] Wallace Jr R H, Kraemer T F, Taylor R E, et al. Assessment of onshore geopressured-geothermal resources in the northern Gulf of Mexico basin[J]. Geological Survey Circular (United States), 1979, 726(790): 132-155.

    Google Scholar

    [12] Dickson M H, Fanelli M. What is geothermal energy?[R]. Pisa: Istituto di Geoscienze e Georisorse, 2004.

    Google Scholar

    [13] Potter R M, Robinson E S, Smith M C. Method of extracting heat from dry geothermal reservoirs: US, 3786858[P]. 1974-01-22.

    Google Scholar

    [14] EurOBserv'ER. Geothermal energy barometer[J]. Systemes Solaires, 2007, 39(23): 49-66.

    Google Scholar

    [15] 黄尚瑶, 胡素敏, 马兰, 等. 火山·温泉·地热能[M]. 北京: 地质出版社, 1986: 95-105.

    Google Scholar

    Huang S Y, Hu S M, Ma L, et al. Volcano, hot spring and geothermal energy[M]. Beijing: Geological Publishing House, 1986: 95-105. (in Chinese)

    Google Scholar

    [16] 陈墨香, 汪集旸, 邓孝. 中国地热系统类型图及其简要说明[J]. 地质科学, 1996, 31(2): 114-121.

    Google Scholar

    Chen M X, Wang J Y, Deng X. The map of geothermal system types in China and its brief explanation[J]. Scientia Geologica Sinica, 1996, 31(2): 114-121.

    Google Scholar

    [17] 陈墨香, 汪集旸, 邓孝. 中国地热资源——形成特点和潜力评估[M]. 北京: 科学出版社, 1994: 1-39.

    Google Scholar

    Chen M X, Wang J Y, Deng X. Geothermal resources in China: Formation characteristics and potential evaluation[M]. Beijing: Science Press, 1994: 1-39. (in Chinese)

    Google Scholar

    [18] Wisian K W, Blackwell D D. Numerical modeling of Basin and Range geothermal systems[J]. Geothermics, 2004, 33(6): 713-741. doi: 10.1016/j.geothermics.2004.01.002

    CrossRef Google Scholar

    [19] Cherubini Y, Cacace M, Scheck-Wenderoth M, et al. Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site GroβSchönebeck[J]. Environmental Earth Sciences, 2013, 70(8): 3619-3642. doi: 10.1007/s12665-013-2519-4

    CrossRef Google Scholar

    [20] 陈鹏. 长白山松江河地区地热资源形成条件及主控因素[D]. 长春: 吉林大学, 2018.

    Google Scholar

    Chen P. The formation conditions and main controlling factors of geothermal resources in Songjianghe area of Changbai Mountain[D]. Changchun: Jilin University, 2018.

    Google Scholar

    [21] 张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3): 190-198.

    Google Scholar

    Zhang Y, Feng J Y, He Z L, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3): 190-198.

    Google Scholar

    [22] 林正良, 肖鹏飞, 李弘, 等. 甘孜地区雅拉河段地热系统特征及控制因素[J]. 地质与勘探, 2015, 51(4): 764-771.

    Google Scholar

    Lin Z L, Xiao P F, Li H, et al. Characteristics of the geothermal system and control factors in the Yalahe Reach, Ganzi Area[J]. Geology and Exploration, 2015, 51(4): 764-771.

    Google Scholar

    [23] 甘军, 吴迪, 张迎朝, 等. 琼东南盆地现今地层温度分布特征及油气地质意义[J]. 高校地质学报, 2019, 25(6): 952-960.

    Google Scholar

    Gan J, Wu D, Zhang Y C, et al. Distribution Pattern of present-day formation temperature in the Qiongdongnan Basin: implications for hydrocarbon generation and preservation[J]. Geological Journal of China Universities, 2019, 25(6): 952-960.

    Google Scholar

    [24] Muffler L J P. Tectonic and hydrologic control on the nature and distribution of geothermal resources[C]//Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources. San Franico, 1976: 499-507.

    Google Scholar

    [25] Zarrouk S J, Moore T. Preliminary assessment of the geothermal signature and ECBM potential of the Huntly Coalbed methane field, New Zealand[C]//Proceedings of the 29th NZ Geothermal Workshop. Auckland, New Zealand, 2007.

    Google Scholar

    [26] 季汉成, 李海泉, 陈亮, 等. 南襄盆地地热系统构成及资源量预测: 以泌阳、南阳凹陷为例[J]. 地学前缘, 2017, 24(3): 199-209.

    Google Scholar

    Ji H C, Li H Q, Chen L, et al. Composition and resource prediction of the Nanxiang Basin geothermal system: a case study, from the Biyang and Nanyang Sags[J]. Earth Science Frontiers, 2017, 24(3): 199-209.

    Google Scholar

    [27] 彭大钧. 地压地热资源[J]. 成都地质学院学报, 1981(1): 86-97.

    Google Scholar

    Peng D J. Geopressure geothermal resources[J]. Journal of Chengdu University of Technology (Natural Science Edition), 1981(1): 86-97. (in Chinese)

    Google Scholar

    [28] Bitzer K. Mechanisms for generating overpressure in sedimentary basins: a revaluation: discussion[J]. AAPG Bulletin, 1999, 83(5): 798-799.

    Google Scholar

    [29] 王连进, 叶加仁. 沉积盆地超压形成机制述评[J]. 石油与天然气地质, 2001, 22(1): 17-20.

    Google Scholar

    Wang L J, Ye J R. A comment on forming mechanism of overpressure in sedimentary basins[J]. Oil & Gas Geology, 2001, 22(1): 17-20.

    Google Scholar

    [30] 李正, 贾海平, 张阳, 等. 渭河盆地地热资源类型[J]. 承德石油高等专科学校学报, 2017, 19(4): 1-5.

    Google Scholar

    Li Z, Jia H P, Zhang Y, et al. Types of geothermal resources in Weihe Basin[J]. Journal of Chengde Petroleum College, 2017, 19(4): 1-5.

    Google Scholar

    [31] Tester J W, Anderson B J, Batchelor A S, et al. The futher of geothermal energy[D]. Stanford, CA: Stanford University, 2013.

    Google Scholar

    [32] 汪集旸. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 1-240.

    Google Scholar

    Wang J Y. Low-Medium temperature geothermal system of convective type[M]. Beijing: Science Press, 1993: 1-240.

    Google Scholar

    [33] 张金华, 魏伟, 杜东, 等. 地热资源的开发利用及可持续发展[J]. 中外能源, 2013, 18(1): 30-35.

    Google Scholar

    Zhang J H, Wei W, Du D, et al. The development, utilization and sustainable development of geothermal resources[J]. Sino-Global Energy, 2013, 18(1): 30-35.

    Google Scholar

    [34] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31.

    Google Scholar

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31.

    Google Scholar

    [35] Zarrouk S J, McLean K. Geothermal systems[M]//Zarrouk S J, McLean K. Geothermal Well Test Analysis: Fundamentals, Applications and Advanced Techniques. New York: Academic Press, 2019: 13-38.

    Google Scholar

    [36] White D E. Characteristics of geothermal resources[J]. EOS, Trans Am Geophys Union, 1973, 54: 4(4): 223-224.

    Google Scholar

    [37] 伍小雄. 松辽盆地北部干热岩地热资源研究[D]. 大庆: 东北石油大学, 2014.

    Google Scholar

    Wu X X. Research of geothermal resources on dry hot rocks in North Songliao Basin[D]. Daqing: Northeast Petroleum University, 2014.

    Google Scholar

    [38] 李朋威, 何治亮, 张英, 等. 我国水热型地热系统类型与形成机理浅析[C]//2014年博士后学术论坛——油气成藏理论与勘探开发技术论文集. 北京: 中国石化石油勘探开发研究院, 中国石化石油工程技术研究院, 2014: 193-203.

    Google Scholar

    Li P W, He Z L, Zhang Y, et al. Types and distribution of the hydro-geothermal systems in China[C]//2014 Postdoctoral Academic Forum: Oil and Gas Reservoir Formation Theory and Exploration-Development Technology. Beijing: Sinopec Petroleum Exploration and Development Research Institute, SINOPEC Research Institute of Petroleum Engineering, 2014: 193-203. (in Chinese)

    Google Scholar

    [39] 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉: 中国地质大学, 2018.

    Google Scholar

    Wang X. Formation conditions and hydrogeochemical characteristics of the geothermal water in Typical Coastal Geothermal field with Deep faults, Guangdong Province[D]. Wuhan: China University of Geosciences, 2018.

    Google Scholar

    [40] 廖志杰. 促进中低温对流型地热资源的开发利用[J]. 科技导报, 2012, 30(32): 80.

    Google Scholar

    Liao Z J. Promote the development and utilization of medium and low temperature convective geothermal resources[J]. Science & Technology Review, 2012, 30(32): 80. (in Chinese)

    Google Scholar

    [41] White D E. Hydrology, activity, and heat flow of the Steamboat Springs thermal system, Washoe County, Nevada[R]. Washington, D. C. : United States Government Printing Office, 1968: 1-116.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(9907) PDF downloads(559) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint