2021 Vol. 30, No. 2
Article Contents

LI Xiao-song, FAN Wen, CAO Yan-bo, QUAN Zhuo-liang. MatDEM-BASED NUMERICAL SIMULATION ANALYSIS OF YANJIAGOU LANDSLIDE EVOLUTION PROCESS[J]. Geology and Resources, 2021, 30(2): 199-206. doi: 10.13686/j.cnki.dzyzy.2021.02.012
Citation: LI Xiao-song, FAN Wen, CAO Yan-bo, QUAN Zhuo-liang. MatDEM-BASED NUMERICAL SIMULATION ANALYSIS OF YANJIAGOU LANDSLIDE EVOLUTION PROCESS[J]. Geology and Resources, 2021, 30(2): 199-206. doi: 10.13686/j.cnki.dzyzy.2021.02.012

MatDEM-BASED NUMERICAL SIMULATION ANALYSIS OF YANJIAGOU LANDSLIDE EVOLUTION PROCESS

  • Through the investigation on the basic geological characteristics of Yanjiagou landslide in Shanyang County of Shaanxi Province, the paper obtains landslide elevation data by means of drone, and establishes a MatDEM-based 3D discrete element model of the landslide movement and accumulation features, which restores the whole process of landslide occurrence and gains the characteristics of movement velocity, sliding distance, and accumulation thickness. It is considered that the Yanjiagou landslide is of high-speed type. The landslide accumulation process is divided into three stages: accelerated collision→overall sliding→deceleration accumulation. The distribution of accumulation thickness shows a general trend of increasing first and then decreasing along the movement direction, reaching the maximum at the back of accumulation body. It is proved that MatDEM is feasible to simulate the landslide evolution process.

  • 加载中
  • [1] 杨海龙, 樊晓一, 张友谊, 等. 山阳烟家沟滑坡成因机制与运动特征研究[J]. 路基工程, 2016(6): 30-35.

    Google Scholar

    Yang H L, Fan X Y, Zhang Y Y, et al. Study on formation mechanism and motion characteristics of Yanjiagou landslide in Shanyang[J]. Subgrade Engineering, 2016(6): 30-35.

    Google Scholar

    [2] 周明浪. 台风"苏迪罗"期间温州滑坡灾害特征及预警成果分析[J]. 地质与资源, 2017, 26(3): 303-309.

    Google Scholar

    Zhou M L. Characteristics of landslide disaster in Wenzhou during typhoon Soudelor and analysis of early warning results[J]. Geology and Resources, 2017, 26(3): 303-309.

    Google Scholar

    [3] 徐晨栋, 苑康泽, 郭子坤, 等. 清子高速某工程滑坡诱发机制及治理模拟[J]. 地质与资源, 2020, 29(2): 196-201. doi: 10.3969/j.issn.1671-1947.2020.02.012

    CrossRef Google Scholar

    Xu C D, Yuan K Z, Guo Z K, et al. Inducement mechanism and treatment simulation of an engineering landslide on Qingzi expressway[J]. Geology and Resources, 2020, 29(2): 196-201. doi: 10.3969/j.issn.1671-1947.2020.02.012

    CrossRef Google Scholar

    [4] 鲁晓兵, 王义华, 王淑云, 等. 碎屑流沿坡面运动的初步分析[J]. 岩土力学, 2004, 25(S2): 598-600.

    Google Scholar

    Lu X B, Wang Y H, Wang S Y, et al. The primary analysis on the castic gain fow[J]. Rock and Soil Mechanics, 2004, 25(S2): 598-600.

    Google Scholar

    [5] Fan X Y, Tian S J, Zhang Y Y. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation[J]. Journal of Mountain Science, 2016, 13(2): 234-245. doi: 10.1007/s11629-014-3396-3

    CrossRef Google Scholar

    [6] 郝明辉, 许强, 杨兴国, 等. 高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J]. 岩石力学与工程学报, 2015, 34(3): 472-479.

    Google Scholar

    Hao M H, Xu Q, Yang X G, et al. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 472-479.

    Google Scholar

    [7] Hungr O, McDougall S. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences, 2009, 35(5): 978-992.

    Google Scholar

    [8] Liu C, Pollard D D, Gu K, et al. Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8153-8168. doi: 10.1002/2015JB012374

    CrossRef Google Scholar

    [9] 刘春, 范宣梅, 朱晨光, 等. 三维大规模滑坡离散元建模与模拟研究——以茂县新磨村滑坡为例[J]. 工程地质学报, 2019, 27(6): 1362-1370.

    Google Scholar

    Liu C, Fan X M, Zhu C G, et al. Discrete element modeling and simulation of 3-dimen-sional large-scale landslide-taking Xinmocun landslide as an example[J]. Journal of Engineering Geology, 2019, 27(6): 1362-1370.

    Google Scholar

    [10] 杨海龙, 樊晓一, 裴向军. 基于离散元法的偏转型滑坡运动堆积特征分析[J]. 长江科学院院报, 2020, 37(2): 106-111, 118.

    Google Scholar

    Yang H L, Fan X Y, Pei X J. DEM-based analysis of movement and accumulation characteristics of turning-type landslide[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(2): 106-111, 118.

    Google Scholar

    [11] 李凯. 陕西山阳县中村钒矿区滑坡形成机理及早期识别研究[D]. 西安: 长安大学, 2017.

    Google Scholar

    Li K. Study on formation mechanism and early identification of landslide in Zhongcun vanadium mine of Shanyang County, Shaanxi Province[D]. Xi'an: Chang'an University, 2017.

    Google Scholar

    [12] 苏艳军. 山阳-商南钒矿带矿区斜坡破坏机理分析及地质灾害危险性评价[D]. 西安: 长安大学, 2019.

    Google Scholar

    Su Y J. Geological disaster hazard assessments and analysis of slope failure mechanism on Shanyang-Shangnan vanadium mine belt[D]. Xi'an: Chang'an University, 2017.

    Google Scholar

    [13] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47

    CrossRef Google Scholar

    [14] 谢莉, 李渝生, 曹建军, 等. 澜沧江某水电站右坝肩岩体倾倒变形的数值模拟[J]. 中国地质, 2009, 36(4): 907-914. doi: 10.3969/j.issn.1000-3657.2009.04.019

    CrossRef Google Scholar

    Xie L, Li Y S, Cao J J, et al. Numerical simulation of toppling rock mass deformation in the right dam abutment of a hydropower station on the Lancang River[J]. Geology in China, 2009, 36(4): 907-914. doi: 10.3969/j.issn.1000-3657.2009.04.019

    CrossRef Google Scholar

    [15] Goldenberg C, Goldhirsch I. Friction enhances elasticity in granular solids[J]. Nature, 2005, 435(7039): 188-191. doi: 10.1038/nature03497

    CrossRef Google Scholar

    [16] 李祥龙, 唐辉明, 熊承仁, 等. 岩石碎屑流运移堆积过程数值模拟[J]. 工程地质学报, 2011, 19(2): 168-175. doi: 10.3969/j.issn.1004-9665.2011.02.004

    CrossRef Google Scholar

    Li X L, Tang H M, Xiong C R, et al. Numerical simulation of flow and deposition process of rock avalanche[J]. Journal of Engineering Geology, 2011, 19(2): 168-175. doi: 10.3969/j.issn.1004-9665.2011.02.004

    CrossRef Google Scholar

    [17] 施凤根. 基于PFC3D的文家沟滑坡高速远程运动学特征研究[D]. 北京: 中国地质大学, 2014.

    Google Scholar

    Shi F G. The study of rapid and long-runout characteristics of Wenjiagou landslide based on PFC3D[D]. Beijing: China University of Geosciences, 2014.

    Google Scholar

    [18] 刘春. 地质与岩土工程矩阵离散元分析[M]. 北京: 科学出版社, 2019: 5-7.

    Google Scholar

    Liu C. Matrix discrete element analysis of geology and geotechnical engineering[M]. Beijing: Science Press, 2019: 5-7.

    Google Scholar

    [19] Liu C, Xu Q, Shi B, et al. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks[J]. Computers & Geosciences, 2017, 103: 12-20.

    Google Scholar

    [20] 周喻, 王莉, 丁剑锋, 等. 多尺度节理岩体力学特性的颗粒流分析[J]. 岩土力学, 2016, 37(7): 2085-2095, 2127.

    Google Scholar

    Zhou Y, Wang L, Ding J F, et al. Particle flow code analysis of multi-scale jointed rock mass based upon equivalent rock mass technique[J]. Rock and Soil Mechanics, 2016, 37(7): 2085-2095, 2127.

    Google Scholar

    [21] 胡晓波, 樊晓一, 唐俊杰. 基于离散元的高速远程滑坡运动堆积特征及能量转化研究-以三溪村滑坡为例[J]. 地质力学学报, 2019, 25(4): 527-535.

    Google Scholar

    Hu X B, Fan X Y, Tang J J. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of Dem: a case study of Sanxicun landslide[J]. Journal of Geomechanics, 2019, 25(4): 527-535.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(1747) PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint