2019 Vol. 28, No. 1
Article Contents

LING Xin-ying, MA Jin-zhu, YANG Huan, YU Hai-chao, HE Jian-hua. 81Kr: A NEW METHOD OF PALEOGROUNDWATER DATING[J]. Geology and Resources, 2019, 28(1): 90-94.
Citation: LING Xin-ying, MA Jin-zhu, YANG Huan, YU Hai-chao, HE Jian-hua. 81Kr: A NEW METHOD OF PALEOGROUNDWATER DATING[J]. Geology and Resources, 2019, 28(1): 90-94.

81Kr: A NEW METHOD OF PALEOGROUNDWATER DATING

  • Due to its advantages such as stable chemical property, long half-life and no extra sources during groundwater migration, 81Kr has recently become an effective method to determine the age of paleogroundwater (105-106 a). The overseas researches on determination of 81Kr and groundwater dating are relatively mature, yet related domestic studies are still at the beginning stage. This paper summarizes the principles of 81Kr in groundwater dating and extraction method, discusses the problems in current research, and makes prospects for the studies of radioactive Kr nuclide in hydrogeochemistry, which provides scientific basis for the researches at home.

  • 加载中
  • [1] Cook P G, Herczeg A L. Environmental tracers in subsurface hydrology[M]. Springer US, 2000:397-424.

    Google Scholar

    [2] Collon P, Kutschera W, Loosli H H, et al. 81Kr in the Great Artesian Basin, Australia:A new method for dating very old groundwater[J]. Earth&Planetary Science Letters, 2000, 182(1):103-113.

    Google Scholar

    [3] Loosli H H, Oeschger H. 37Ar and 81Kr in the atmosphere[J]. Earth&Planetary Science Letters, 1969, 7(1):67-71.

    Google Scholar

    [4] Aggarwal P K, Gat J R, Froehlich K F. Isotopes in the Water Cycle:Past, present and future of a developing science[J]. Springer-Verlag GmbH, 2005:91-95.

    Google Scholar

    [5] Momoshima N, Inoue F, Sugihara S, et al. An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination[J]. Journal of Environmental Radioactivity, 2010, 101(8):615. doi: 10.1016/j.jenvrad.2010.03.009

    CrossRef Google Scholar

    [6] Collon P, Antaya T, Davids B, et al. Measurement of 81Kr in the atmosphere[J]. Nuclear Instruments & Methods in Physics Research, 1997, 123(1/4):122-127.

    Google Scholar

    [7] Lehmann B E, Love A, Purtschert R, et al. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia[J]. Earth & Planetary Science Letters, 2003, 211(3/4):237-250.

    Google Scholar

    [8] Chen C Y, Li Y M, Bailey K, et al. Ultrasensitive isotope trace analyses with a magneto-optical trap[J]. Science, 1999, 286(5442):1139-1141. doi: 10.1126/science.286.5442.1139

    CrossRef Google Scholar

    [9] Du X, Purtschert R, Bailey K, et al. A new method of measuring 81Kr and 85Kr abundances in environmental samples[J]. Geophysical Research Letters, 2003, 30(20):2068.

    Google Scholar

    [10] Sturchio N C, Du X, Purtschert R, et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36[J]. Geophysical Research Letters, 2004, 31(5):179-211.

    Google Scholar

    [11] Jiang W, Bailey K, Lu Z T, et al. An atom counter for measuring 81Kr and 85Kr in environmental samples[J]. Geochimica et Cosmochimica Acta, 2012, 91(5):1-6.

    Google Scholar

    [12] Sidle W C. Apparent 85Kr ages of groundwater within the Royal watershed, Maine, USA[J]. Journal of Environmental Radioactivity, 2006, 91(3):113-127.

    Google Scholar

    [13] Ozima M, Podosek F A. Noble gas geochemistry[M]. Cambridge:Cambridge University Press, 1983, 367.

    Google Scholar

    [14] Mamyrin B A, Anufriev G S, Kamenskii I L, et al. Determination of the isotopic composition of atmospheric helium[J]. Geochemistry International, 1970, 7(4):465-9.

    Google Scholar

    [15] Oliver B M, Bradley J G, Harry Farrar I V. Helium concentration in the Earth's lower atmosphere[J]. Geochimica et Cosmochimica Acta, 1984, 48(9):1759-1767. doi: 10.1016/0016-7037(84)90030-9

    CrossRef Google Scholar

    [16] Verniani F. The total mass of the Earth's atmosphere[J]. Journal of Geophysical Research, 1966, 71(2):385-391.

    Google Scholar

    [17] Kutschera W, Paul M, Ahmad I, et al. Long-lived noble gas radionuclides[J]. Nuclear Instruments & Methods in Physics Research, 1994, 92(1):241-248.

    Google Scholar

    [18] Beňo J B, Masarik J M. Numerical simulations of 81Kr production rates[J]. Meteoritics&planetary Science Supplement, 2013, 76.

    Google Scholar

    [19] Baglin C M. Nuclear data sheets for A=81[J]. Nuclear Data Sheets, 2008, 109(10):2257-2437. doi: 10.1016/j.nds.2008.09.001

    CrossRef Google Scholar

    [20] Florkowski T. Natural production of radionuclides in geological formations[J]. Journal of Physics G:Nuclear & Particle Physics, 1991, 17(1):1-14.

    Google Scholar

    [21] Buizert C, Baggenstos D, Jiang W, et al. Radiometric 81Kr dating identifies 120, 000-year-old ice at Taylor Glacier, Antarctica[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19):6876-81. doi: 10.1073/pnas.1320329111

    CrossRef Google Scholar

    [22] Collon P, Cole D, Davids B, et al. Measurement of the long-lived radionuclide 81Kr in pre-nuclear and present-day atmospheric krypton[J]. Radiochimica Acta, 1999, 85(1/2):13-20.

    Google Scholar

    [23] Lehmann B E, Loosli H H, Rauber D, et al. 81Kr and 85Kr in groundwater, Milk River aquifer, Alberta, Canada[J]. Applied Geochemistry, 1991, 6(4):419-423.

    Google Scholar

    [24] Aggarwal P K, Matsumoto T, Sturchio N C, et al. Continental degassing of 4He by surficial discharge of deep groundwater[J]. Nature Geoscience, 2015, 8(1):35-39. doi: 10.1038/ngeo2302

    CrossRef Google Scholar

    [25] 涂乐义.地下水溶解氪气分析用于放射性氪同位素测年[D].合肥: 中国科学技术大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10358-1015723048.htm

    Google Scholar

    [26] LI Jie, PANG Zhong-he, YANG Guo-Min, et al. Million-year-old groundwater revealed by krypton-81 dating in Guanzhong Basin, China[J]. Science Bulletin, 2017(17):1181-1184.

    Google Scholar

    [27] Matsumoto T, Chen Z, Wei W, et al. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain[J]. Earth & Planetary Science Letters, 2018, 493:208-217.

    Google Scholar

    [28] Sturchio N C, Kuhlman K L, Yokochi R, et al. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico[J]. Journal of Contaminant Hydrology, 2014, 160(3):12-20.

    Google Scholar

    [29] Gerber C, Vaikmäe R, Aeschbach W, et al. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale[J]. Geochimica et Cosmochimica Acta, 2017, 205:187-210.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(1090) PDF downloads(87) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint