Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2018 Vol. 38, No. 6
Article Contents

BAI Liji, SU Xiujuan, HE Chunlin, MA Shaojian. Study on Microwave-assisted Grinding Mechanism of Cassiterite-polymetallic Sulfide Ore[J]. Conservation and Utilization of Mineral Resources, 2018, (6): 31-36. doi: 10.13779/j.cnki.issn1001-0076.2018.06.006
Citation: BAI Liji, SU Xiujuan, HE Chunlin, MA Shaojian. Study on Microwave-assisted Grinding Mechanism of Cassiterite-polymetallic Sulfide Ore[J]. Conservation and Utilization of Mineral Resources, 2018, (6): 31-36. doi: 10.13779/j.cnki.issn1001-0076.2018.06.006

Study on Microwave-assisted Grinding Mechanism of Cassiterite-polymetallic Sulfide Ore

More Information
  • Corresponding author: SU Xiujuan  
  • Taking cassiterite polymetallic sulphide ore as the research object, the effects of preheating and different cooling methods on the grindability of grinding products were investigated after pretreatment of microwave heating. The results showed that after microwave heating, the grindability increased and the Bond work index decreased. This is mainly due to the fact that the microwave radiation increases the temperature of the metal minerals such as jamesonite, pyrite, sphalerite, cassiterite, etc. in the cassite polymetallic sulfide ore, and has less effect on the gangue minerals. The large temperature gradient between the metallic metal minerals and gangue minerals could produce uneven thermal expansion and promote the dissociation of metallic minerals and gangue minerals due to the high stress concentration inside the ore, thereby strengthening the grinding effect.

  • 加载中
  • [1] 石政威.锡石多金属硫化矿球介质磨矿规律试验研究[J].南宁:广西大学, 2009.

    Google Scholar

    [2] Napier-Munn T. J., Morrell S., Morrison R. D., et al. Mineral comminution circuits:their operation and optimization[M]. Julius kruttschnitt mineral research centre, University of Queensland, 2005:1-2.

    Google Scholar

    [3] Amankwah R. K., Ofori-Sarpong G. Microwave heating of gold ores for enhanced grindability and cyanide amenability[J]. Minerals engineering, 2011, 24(6):541-544. doi: 10.1016/j.mineng.2010.12.002

    CrossRef Google Scholar

    [4] 付润泽, 朱红波, 彭金辉, 等.采用微波助磨技术处理惠民铁矿的研究[J].矿产综合利用, 2012(2):24-27. doi: 10.3969/j.issn.1000-6532.2012.02.007

    CrossRef Google Scholar

    [5] 付润泽.微波辅助磨细惠民铁矿实验研究[D].昆明: 昆明理工大学, 2011.http://cdmd.cnki.com.cn/Article/CDMD-10674-1012263253.htm

    Google Scholar

    [6] Schmuhl R., Smit J. T., Marsh J. H. The influence of microwave pre-treatment of the leach behaviour of disseminated sulphide ore[J]. Hydrometallurgy, 2011, 108(3):157-164.

    Google Scholar

    [7] Omran M., Fabritius T., Abdel-Khalek N., et al. Microwave assisted liberation of high phosphorus oolitic iron ore[J]. Journal of minerals and materials characterization and engineering, 2014, 2(5):414-427. doi: 10.4236/jmmce.2014.25046

    CrossRef Google Scholar

    [8] Omran M., Fabritius T., Mattila R. Thermally assisted liberation of high phosphorus oolitic iron ore:a comparison between microwave and conventional furnaces[J]. Powder technology, 2015, 269:7-14. doi: 10.1016/j.powtec.2014.08.073

    CrossRef Google Scholar

    [9] Lester E., Kingman S., Dodds C., et al. The potential for rapid coke making using microwave energy[J]. Fuel, 2006, 85(14):2057-2063.

    Google Scholar

    [10] Han L. C., Li E., Guo, G. F., et al. Application of transmission/reflection method for permittivity measurement in coal desulfurization[J]. Progress in electromagnetics research letters, 2013, 37:177-187. doi: 10.2528/PIERL12123002

    CrossRef Google Scholar

    [11] Walkiewicz J W, Kazonich G, McGill S L. Microwave heating characteristics of selected minerals and components[J]. Mineral and metallurgical processing, 1988, 5(1):39-42.

    Google Scholar

    [12] McGill S L, Walkiewicz J W, Smyres G A. The effect of power level on microwave heating of selected chemicals and minerals[J]. Materials research society proceedings, 1988, 124:247-252. doi: 10.1557/PROC-124-247

    CrossRef Google Scholar

    [13] Connell L H, Moe L A. Apparatus for treatment of ore US: 3261959[P]. 1966-04-24.

    Google Scholar

    [14] Ford J D, T Pei D C. High temperature chemical process via microwave absorption[J]. Microwave power, 1967, 2(2):61-64. doi: 10.1080/00222739.1967.11688647

    CrossRef Google Scholar

    [15] Whittles D N, Kingman S W, Reddish D J. Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage[J]. International journal of mineral processing, 2003, 68(1):71-91.

    Google Scholar

    [16] Jones D A, Kingman S W, Whittles D N, et al. Understanding microwave assisted breakage[J]. Minerals engineering, 2005, 18(7):659-669. doi: 10.1016/j.mineng.2004.10.011

    CrossRef Google Scholar

    [17] Ali A Y. Understanding the effects of mineralogy, ore texture and microwave power delivery on microwave treatment of ores[J]. Stellenbosch:University of Stellenbosch, 2010.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(9)

Article Metrics

Article views(757) PDF downloads(2) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint