2017 Vol. 37, No. 5
Article Contents

LI Jing, HE Xingliang, LIU Changling, MENG Qingguo, NING Fulong, CHEN Yufeng. EXPERIMENT RESEARCH ON AEROBIC OXIDATION OF MULTICOMPONENT HYDROCARBONS DECOMPOSED FROM MARINE GAS HYDRATES[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
Citation: LI Jing, HE Xingliang, LIU Changling, MENG Qingguo, NING Fulong, CHEN Yufeng. EXPERIMENT RESEARCH ON AEROBIC OXIDATION OF MULTICOMPONENT HYDROCARBONS DECOMPOSED FROM MARINE GAS HYDRATES[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021

EXPERIMENT RESEARCH ON AEROBIC OXIDATION OF MULTICOMPONENT HYDROCARBONS DECOMPOSED FROM MARINE GAS HYDRATES

More Information
  • Natural gas hydrate, as an enormous carbon reservoir, is mainly embedded in subsurface marine sediments. A large amount of hydrocarbons may release from the marine regions where gas hydrate deposits occur. Anaerobic or aerobic oxidation of dissociated hydrocarbon gas in its upward migration may cause hydrocarbon consumption thus decrease the carbon emission to atmosphere. Here, we performed experimental measurements on the aerobic oxidation process using marine sediments containing aerobic hydrocarbon-oxidizing bacteria to simulate the process of aerobic biodegradation for hydrocarbons (C1+C2+C3) that decomposed from gas hydrate. The results show that the composition of methane, ethane and propane decreases together with carbon and hydrogen isotope fractionation during the aerobic consumption. An apparent preference for C1 over C2 and C3 is observed during oxidation. The rates of oxidation are also in an order of C1>C2>C3. At the same time, the carbon and hydrogen isotope of hydrocarbons show a various enrichment tendency. The enrichment amount of carbon isotope of C1, C2 and C3 are 71.05‰, 12.03‰ and 4.61‰, and the average of εC are -11.219‰, -2.951‰ and -1.539‰, respectively. The accumulation amount of hydrogen isotope are 368.64‰, 156.00‰ and 111.97‰ for C1, C2 and C3, as well as the average of εH are -56.092‰, -99.696‰ and -73.303‰ for C1, C2 and C3 , respectively. The enrichment degree of carbon and hydrogen isotope fractionation are in an order of C1>C2>C3 and C2>C3>C1, respectively. Therefore, the aerobic biodegradation of hydrocarbons decomposed from gas hydrate may interfere with the origin discrimination of gas hydrate since the aerobic oxidation makes the composition and carbon and hydrogen isotope fractionation of hydrocarbon changed. Therefore, the influential factor should be considered appropriately to genesis study on gas hydrate when using decomposed hydrocarbons in headspace analysis.

  • 加载中
  • [1] Makogon I U. Hydrates of Natural Gas[M]. Tulsa, Oklahoma: PennWell Books, 1981.

    Google Scholar

    [2] Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates-A potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 14-31. doi: 10.1016/j.petrol.2005.10.009

    CrossRef Google Scholar

    [3] Liu C L, Meng Q G, He X L, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61: 14-21. doi: 10.1016/j.marpetgeo.2014.11.006

    CrossRef Google Scholar

    [4] 贺行良, 王江涛, 刘昌岭, 等.天然气水合物客体分子与同位素组成特征及其地球化学应用[J].海洋地质与第四纪地质, 2012, 32(3): 163-174.

    Google Scholar

    HE Xingliang, WANG Jiangtao, LIU Changling, et al. Guest molecular and isotopic compositions of natrual gas hydrates and its geochemical applications[J]. Marine Geology and Quaternary Geology, 2012, 32(3): 163-174.

    Google Scholar

    [5] Buffett B, Archer D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 185-199. doi: 10.1016/j.epsl.2004.09.005

    CrossRef Google Scholar

    [6] Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective[J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002

    CrossRef Google Scholar

    [7] Randall H. Are methane seeps in the Arctic slowing global warming?[J]. Science, 2017-05-08. http://www.sciencemag.org/news/2017/05/are-methane-seeps-arctic-slowing-global-warming.

    Google Scholar

    [8] Ehhalt D, Prather M, Dentener F, et al. Atmospheric chemistry and greenhouse gases[R]. Richland, WA, US: Pacific Northwest National Laboratory (PNNL), 2001.

    Google Scholar

    [9] Khalil M A K. Atmospheric Methane: Sources, Sinks, and Role in Global Change[M]. Berlin: Springer Science & Business Media, 1993.

    Google Scholar

    [10] Wahlen M. The global methane cycle[J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 407-426. doi: 10.1146/annurev.ea.21.050193.002203

    CrossRef Google Scholar

    [11] Penkett S A, Blake N J, Lightman P, et al. The seasonal variation of nonmethane hydrocarbons in the free troposphere over the North Atlantic Ocean: Possible evidence for extensive reaction of hydrocarbons with the nitrate radical[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D2): 2865-2885. doi: 10.1029/92JD02162

    CrossRef Google Scholar

    [12] Donahue N M, Prinn R G. Nonmethane hydrocarbon chemistry in the remote marine boundary layer[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D11): 18387-18411. doi: 10.1029/JD095iD11p18387

    CrossRef Google Scholar

    [13] Graedel T E, Crutzen P J. Atmospheric Change: an Earth System Perspective[M]. New York: W.H. Freeman and Company, 1993, 302.

    Google Scholar

    [14] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63(1): 311-334. doi: 10.1146/annurev.micro.61.080706.093130

    CrossRef Google Scholar

    [15] Broadgate W J, Liss P S, Penkett S A. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean[J]. Geophysical Research Letters, 1997, 24(21): 2675-2678. doi: 10.1029/97GL02736

    CrossRef Google Scholar

    [16] Hinrichs K U, Hayes J M, Bach W, et al. Biological formation of ethane and propane in the deep marine subsurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(40): 14684-14689. doi: 10.1073/pnas.0606535103

    CrossRef Google Scholar

    [17] Lamontagne R A, Swinnerton J W, Linnenbom V J. C1‐C4 hydrocarbons in the North and South Pacific[J]. Tellus, 1974, 26(1-2): 71-77. doi: 10.3402/tellusa.v26i1-2.9738

    CrossRef Google Scholar

    [18] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    CrossRef Google Scholar

    [19] Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters, 2006, 243(3-4): 354-365. doi: 10.1016/j.epsl.2006.01.041

    CrossRef Google Scholar

    [20] Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    CrossRef Google Scholar

    [21] Rudolph J. The tropospheric distribution and budget of ethane[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D6): 11369-11381. doi: 10.1029/95JD00693

    CrossRef Google Scholar

    [22] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [23] Caldwell S L, Laidler J R, Brewer E A, et al. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18): 6791-6799.

    Google Scholar

    [24] Wyrtki K. The oxygen minima in relation to ocean circulation[J]. Deep Sea Research and Oceanographic Abstracts, 1962, 9(1-2): 11-23. doi: 10.1016/0011-7471(62)90243-7

    CrossRef Google Scholar

    [25] Najjar R G, Keeling R F. Analysis of the mean annual cycle of the dissolved oxygen anomaly in the World Ocean[J]. Journal of Marine Research, 1997, 55(1): 117-151. doi: 10.1357/0022240973224481

    CrossRef Google Scholar

    [26] Garcia H E, Locarnini R A, Boyer T P, et al. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation[R]. World Ocean Atlas, 2009.

    Google Scholar

    [27] Birgel D, Peckmann J, Klautzsch S, et al. Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA[J]. Geomicrobiology Journal, 2006, 23(7): 565-577. doi: 10.1080/01490450600897369

    CrossRef Google Scholar

    [28] Kinnaman F S, Valentine D L, Tyler S C. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 271-283. doi: 10.1016/j.gca.2006.09.007

    CrossRef Google Scholar

    [29] 石强.渤海溶解氧和表观耗氧量季节循环时空模态与机制[J].海洋湖沼通报, 2015(1): 175-186.

    Google Scholar

    SHI Qiang. The mechanism and spatial-temporal model on the seasonal cycle of dissolved oxygen and apparent oxygen utilization in Bohai sea[J]. Transactions of Oceanology and Limnology, 2015(1): 175-186.

    Google Scholar

    [30] 何海清, 王兆云, 韩品龙.渤海湾盆地深层油气藏类型及油气分布规律[J].石油勘探与开发, 1998, 25(3): 6-9.

    Google Scholar

    HE Haiqing, WANG Zhaoyun, HAN Pinlong. Deep zone reservoir type and oil-gas distribution pattern in Bohai bay basin[J]. Petroleum Expliration and Development, 1998, 25(3): 6-9.

    Google Scholar

    [31] 徐守余, 严科.渤海湾盆地构造体系与油气分布[J].地质力学学报, 2005, 11(3): 259-265. doi: 10.3969/j.issn.1006-6616.2005.03.007

    CrossRef Google Scholar

    XU Shouyu, YAN Ke. Structural system and hydrocarbon distribution in the Bohai gulf basin[J]. Journal of Geomechanics, 2005, 11(3): 259-265. doi: 10.3969/j.issn.1006-6616.2005.03.007

    CrossRef Google Scholar

    [32] http://en.wikipedia.org/wiki/Seawater.

    Google Scholar

    [33] 贺行良.天然气水合物气体组成分析方法研究与应用[D].青岛: 中国海洋大学硕士学位论文, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10423-1012505178.htm

    Google Scholar

    HE Xingliang. Study and application of analytical method for gas compositions of natural gas hydrate[D]. Qingdao: Master's Thesis of Ocean University of China, 2012.

    Google Scholar

    [34] 贺行良, 刘昌岭, 王江涛, 等.气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J].岩矿测试, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021

    CrossRef Google Scholar

    HE Xingliang, LIU Changling, WANG Jiangtao, et al. Measurement of carbon and hydrogen isotopes of natural gas hydrate bound gases by gas chromatography-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021

    CrossRef Google Scholar

    [35] 李广之, 胡斌, 袁子艳, 等.轻烃的吸附与解吸模型[J].天然气地球科学, 2006, 17(4): 552-558. doi: 10.3969/j.issn.1672-1926.2006.04.026

    CrossRef Google Scholar

    LI Guangzhi, HU Fu, YUAN Ziyan, et al. The model of light hydrocarbons adsoption and desorption[J]. Natural Gas Geoscience, 2006, 17(4): 552-558. doi: 10.3969/j.issn.1672-1926.2006.04.026

    CrossRef Google Scholar

    [36] 陈立雷, 贺行良, 赵青芳, 等.轻烃在海洋沉积物中的吸附与解吸行为研究[J].天然气地球科学, 2013, 24(4): 798-802.

    Google Scholar

    CHEN Lilei, HE Xingliang, ZHAO Qiangfang, et al. Experimental research on the behavior of the absorption and desorption of light hydrocarbons in marine sediments[J]. Natural Gas Geoscience, 2013, 24(4): 798-802.

    Google Scholar

    [37] 陈立雷, 李双林, 赵青芳, 等.海洋油气微生物好氧降解轻烃模拟试验[J].海洋环境科学, 2013, 32(6): 922-925.

    Google Scholar

    CHEN Lilei, LI Shuanglin, ZHAO Qingfang, et al. Simulating test of aerobic marine oil and gas microbial degradation of light hydrocarbons[J]. Marine Environmental Science, 2013, 32(6): 922-925.

    Google Scholar

    [38] Canfield D E. Organic matter oxidation in marine sediments[M]//Wollast R, Mackenzie F T, Chou L, et al. Interactions of C, N, P and S biogeochemical Cycles and Global Change. Berlin, Heidelberg: Springer, 1993: 333-363.

    Google Scholar

    [39] Weiss R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas[J]. Marine Chemistry, 1974, 2(3): 203-215. doi: 10.1016/0304-4203(74)90015-2

    CrossRef Google Scholar

    [40] Ferris F G, Fyfe W S, Beveridge T J. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment[J]. Chemical Geology, 1987, 63(3-4): 225-232. doi: 10.1016/0009-2541(87)90165-3

    CrossRef Google Scholar

    [41] 匡耀求, 黄宁生, 邹毅, 等.论二氧化碳在大气-海洋-沉积物相互作用过程中的迁移转化[C]//中国矿物岩石地球化学学会第13届学术年会论文集.广州: 中国矿物岩石地球化学学会, 2011.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001500.htm

    Google Scholar

    KUANG Yaoqiu, HUANG Ningsheng, ZOU Yi, et al. Comment on migration and transformation of carbon dioxide in the process of interaction among atmosphere-marine-sediment[C]//Chinese Sociey of Mineralogy, Petrology and Geochemistry 13th Academic Annual Conference Proceedings. Guangzhou: Chinese Sociey of Mineralogy, Petrology and Geochemistry, 2011.

    Google Scholar

    [42] Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9(1): 18-27. doi: 10.3402/tellusa.v9i1.9075

    CrossRef Google Scholar

    [43] Coleman D D, Risatti J B, Schoell M. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria[J]. Geochimica et Cosmochimica Acta, 1981, 45(7): 1033-1037. doi: 10.1016/0016-7037(81)90129-0

    CrossRef Google Scholar

    [44] Mariotti A, Germon J C, Hubert P, et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62(3): 413-430. doi: 10.1007/BF02374138

    CrossRef Google Scholar

    [45] Chu K H, Mahendra S, Song D L, et al. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes[J]. Environmental Science and Technology, 2004, 38(11): 3126-3130. doi: 10.1021/es035238c

    CrossRef Google Scholar

    [46] 徐立恒.天然气碳同位素分馏作用及其在徐家围子地区的应用[D].大庆: 大庆石油学院硕士学位论文, 2006.http://cdmd.cnki.com.cn/Article/CDMD-10220-2006058422.htm

    Google Scholar

    XU Lihuan. Carbon isotope fractional distillation of natural gas and its application in Xujiaweizi area[D]. Daqing: Master's Thesis of Northeast Petroleum University, 2006.

    Google Scholar

    [47] Biastoch A, Treude T, Rüpke L H, et al. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification[J]. Geophysical Research Letters, 2011, 38(8): L08602.

    Google Scholar

    [48] Skarke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7(9): 657-661. doi: 10.1038/ngeo2232

    CrossRef Google Scholar

    [49] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615. doi: 10.1126/science.1109004

    CrossRef Google Scholar

    [50] 赵祖斌, 杨木壮, 沙志彬.天然气水合物气体成因及其来源[J].海洋地质动态, 2001, 17(7): 38-41. doi: 10.3969/j.issn.1009-2722.2001.07.009

    CrossRef Google Scholar

    ZHAO Zubin, YANG Muzhuang, SHA Zhibin. Genesis and source of hydrocarbon from natural gas hydrates[J]. Marine Geology Letters, 2001, 17(7): 38-41. doi: 10.3969/j.issn.1009-2722.2001.07.009

    CrossRef Google Scholar

    [51] Milkov A V. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36(5): 681-702. doi: 10.1016/j.orggeochem.2005.01.010

    CrossRef Google Scholar

    [52] Kim J H, Park M H, Chun J H, et al. Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin: high alkalinity escape fuelled by biogenically sourced methane[J]. Geo-Marine Letters, 2011, 31(1): 37-49. doi: 10.1007/s00367-010-0214-y

    CrossRef Google Scholar

    [53] Pape T, Bahr A, Rethemeyer J, et al. Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site[J]. Chemical Geology, 2010, 269(3-4): 350-363. doi: 10.1016/j.chemgeo.2009.10.009

    CrossRef Google Scholar

    [54] Waseda A, Uchida T. Origin of methane in natural gas hydrates from Mackenzie Delta and Nankai Trough[C]//Proceedings of the Fourth International Conference on Gas Hydrates. Yokohama: Hiyoshi, 2002: 174.

    Google Scholar

    [55] Matsumoto R, Uchida T, Waseda A, et al. 2. Occurrence, structure, and composition of natural gas hydrate recovered from the Blake Ridge, Northwest Atlantic[C]//Proceedings of the Ocean Drilling Program, Scientific Results. United States: National Science Foundation, 2000, 164: 13-28.

    Google Scholar

    [56] Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11-12): 997-1008. doi: 10.1016/0146-6380(96)00002-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2260) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint