2017 Vol. 37, No. 5
Article Contents

DONG Yifei, LUO Wenzao, LIANG Qianyong, QIU Huanglin, REN Chong, YAN Ru, LIN Jinqing. A NEWLY DEVELOPED BOTTOM-SUPPORTED SUBMERSIBLE BUOYANT SYSTEM AND ITS TESTING APPLICATION TO A NATURAL GAS HYDRATE AREA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195-203. doi: 10.16562/j.cnki.0256-1492.2017.05.020
Citation: DONG Yifei, LUO Wenzao, LIANG Qianyong, QIU Huanglin, REN Chong, YAN Ru, LIN Jinqing. A NEWLY DEVELOPED BOTTOM-SUPPORTED SUBMERSIBLE BUOYANT SYSTEM AND ITS TESTING APPLICATION TO A NATURAL GAS HYDRATE AREA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195-203. doi: 10.16562/j.cnki.0256-1492.2017.05.020

A NEWLY DEVELOPED BOTTOM-SUPPORTED SUBMERSIBLE BUOYANT SYSTEM AND ITS TESTING APPLICATION TO A NATURAL GAS HYDRATE AREA

  • A bottom-supported submersible buoyant system is designed for long-term seabed environmental monitoring in a natural gas hydrate area. It can be used to study the characteristics of submarine environment in the area and to collect long-term environmental parameters for seabed boundary layers. Through comparison of related parameters acquired before and after, the changes near seafloor resulted from the exploration and pilot production of natural gas hydrate could be monitored and assessed, for the purpose to reduce the risk of environmental changes. The submersible may carry various sensors, such as those for measurement of methane and carbon dioxide, CTD (Conductance, Temperature and Depth), dissolved oxygen, turbidity, transmittance, ADCP (Acoustic Doppler Current Profilers) and single-point RCM (Recording Current Meter). It can be recovered by discarding the clump weight through deep-sea acoustic release transponder. The maximum working depth of this system is 4000 meters and the batteries are sufficient to provide power for all the sensors for more than 180 days. After a successful deep-sea test with effective data and safe recovery in northern South China Sea, it is confirmed that the bottom-supported submersible buoyant system has a promising prospect of application in improving safe and effective use of natural gas hydrate resources.

  • 加载中
  • [1] 姚伯初.南海天然气水合物的形成和分布[J].海洋地质与第四纪地质, 2005, 25(2): 81-90.

    Google Scholar

    YAO Bochu. The forming condition and distribution characteristics of the gas hydrate in the South China Sea[J]. Marine Geology and Quaternary Geology, 2005, 25(2): 81-90.

    Google Scholar

    [2] 吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探[J].天然气工业, 2007, 27(9): 1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001

    CrossRef Google Scholar

    WU Nengyou, ZHANG Haiqi, YANG Shengxiong, et al. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea[J]. Natural Gas Industry, 2007, 27(9): 1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001

    CrossRef Google Scholar

    [3] 邓希光, 吴庐山, 付少英, 等.南海北部天然气水合物研究进展[J].海洋学研究, 2008, 26(2): 67-74. doi: 10.3969/j.issn.1001-909X.2008.02.010

    CrossRef Google Scholar

    DENG Xiguang, WU Lushan, FU Shaoying, et al. The research advances of natural gas hydrates in northern South China Sea[J]. Journal of Marine Sciences, 2008, 26(2): 67-74. doi: 10.3969/j.issn.1001-909X.2008.02.010

    CrossRef Google Scholar

    [4] 王宏斌, 张光学, 梁劲, 等.南海北部陆坡构造坡折带中的天然气水合物[J].沉积学报, 2008, 26(2): 283-293.

    Google Scholar

    WANG Hongbin, ZHANG Guangxue, LIANG Jin, et al. Gas hydrates in the SSBZ in the North Slope of the South China Sea[J]. Acta Sedimentologica Sinica, 2008, 26(2): 283-293.

    Google Scholar

    [5] 陈多福, 姚伯初, 赵振华, 等.珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J].海洋地质与第四纪地质, 2001, 21(4): 73-78.

    Google Scholar

    CHEN Duofu, YAO Bochu, ZHAO Zhenhua, et al. Geochemical constraints and potential distributions of gas hydrates in pearl river mouth basin and Qiongdongnan basin in the northern margin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2001, 21(4): 73-78.

    Google Scholar

    [6] Bohannon J. Weighing the climate risks of an untapped fossil fuel[J]. Science, 2008, 319(5871): 1753. doi: 10.1126/science.319.5871.1753

    CrossRef Google Scholar

    [7] 魏合龙, 孙治雷, 王利波, 等.天然气水合物系统的环境效应[J].海洋地质与第四纪地质, 2016, 36(1): 1-13.

    Google Scholar

    WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology and Quaternary Geology, 2016, 36(1): 1-13.

    Google Scholar

    [8] Lelieveld J, Crutzen P J, Dentener F J. Changing concentration, lifetime and climate forcing of atmospheric methane[J]. Tellus B: Chemical and Physical Meteorology, 1998, 50(2): 128-150. doi: 10.3402/tellusb.v50i2.16030

    CrossRef Google Scholar

    [9] Vanneste M, Sultan N, Garziglia S, et al. Seafloor instabilities and sediment deformation processes: the need for integrated, multi-disciplinary investigations[J]. Marine Geology, 2014, 352: 183-214. doi: 10.1016/j.margeo.2014.01.005

    CrossRef Google Scholar

    [10] Harbitz C B. Model simulations of tsunamis generated by the Storegga slides[J]. Marine Geology, 1992, 105(1-4): 1-21. doi: 10.1016/0025-3227(92)90178-K

    CrossRef Google Scholar

    [11] 李飞权, 张选明, 张鹏, 等.海洋潜标系统的设计和应用[J].海洋技术, 2004, 23(1): 17-21. doi: 10.3969/j.issn.1003-2029.2004.01.004

    CrossRef Google Scholar

    LI Feiquan, ZHANG Xuanming, ZHANG Peng, et al. The design and application of marine submersible buoy system[J]. Ocean Technology, 2004, 23(1): 17-21. doi: 10.3969/j.issn.1003-2029.2004.01.004

    CrossRef Google Scholar

    [12] 杨坤汉.试论潜标系统在我国海洋事业中的地位和作用[J].海洋技术, 1989, 8(1): 77-88.

    Google Scholar

    YANG Kunhan. On the role of subsurface mooring system in oceanographic research in China[J]. Ocean Technology, 1989, 8(1): 77-88.

    Google Scholar

    [13] Tengberg A, De Bovee F, Hall P, et al. Benthic chamber and profiling landers in oceanography - a review of design, technical solutions and functioning[J]. Progress in Oceanography, 1995, 35(3): 253-294. doi: 10.1016/0079-6611(95)00009-6

    CrossRef Google Scholar

    [14] Smith Jr K L, Glatts R C, Baldwin R J, et al. An autonomous. bottom-transecting vehicle for making long time-series measurements of sediment community oxygen consumption to abyssal depths[J]. Limnology and Oceanography, 1997, 42(7): 1601-1612. doi: 10.4319/lo.1997.42.7.1601

    CrossRef Google Scholar

    [15] Pfannkuche O, Linke P. GEOMAR landers as long-term deep-sea observatories[J]. Sea Technology, 2003, 44(9): 50-55.

    Google Scholar

    [16] Beranzoli L, De Santis A, Etiope G, et al. GEOSTAR: a geophysical and oceanographic station for abyssal research[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 175-183. doi: 10.1016/S0031-9201(98)00094-6

    CrossRef Google Scholar

    [17] 汪品先.从海洋内部研究海洋[J].地球科学进展, 2013, 28(5): 517-520.

    Google Scholar

    WANG Pinxian. Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28(5): 517-520.

    Google Scholar

    [18] 徐如彦, 沈宁, 倪佐涛, 等.自升式连体潜标测量系统的设计与实施[J].海洋科学, 2014, 38(12): 94-98. doi: 10.11759/hykx20131028003

    CrossRef Google Scholar

    XU Ruyan, SHEN Ning, NI Zuotao, et al. Design and analysis of the self-elevating double submerged buoy measurement system[J]. Marine Sciences, 2014, 38(12): 94-98. doi: 10.11759/hykx20131028003

    CrossRef Google Scholar

    [19] 赵广涛, 于新生, 李欣, 等. Benvir:一个深海海底边界层原位监测装置[J].高技术通讯, 2015, 25(1): 54-60.

    Google Scholar

    ZHAO Guangtao, YU Xinsheng, LI Xin, et al. Benvir: a in situ Deep-sea observation system for Benthic environmental monitoring[J]. High Technology Letters, 2015, 25(1): 54-60.

    Google Scholar

    [20] 赵广涛, 徐翠玲, 张晓东, 等.海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J].中国海洋大学学报, 2014, 44(12): 73-81.

    Google Scholar

    ZHAO Guangtao, XU Cuiling, ZHANG Xiaodong, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface[J]. Periodical of Ocean University of China, 2014, 44(12): 73-81.

    Google Scholar

    [21] 胡刚, 赵铁虎, 章雪挺, 等.天然气水合物赋存区近海底环境原位观测系统集成与实现[J].海洋地质前沿, 2015, 31(6): 30-35.

    Google Scholar

    HU Gang, ZHAO Tiehu, ZHANG Xueting, et al. Integration and implementation of seabed environment in-situ monitoring systems in natural gas hydrate area[J]. Marine Geology Frontiers, 2015, 31(6): 30-35.

    Google Scholar

    [22] Wiesenburg D A, Guinasso Jr N L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water[J]. Journal of Chemical and Engineering Data, 1979, 24(4): 356-360. doi: 10.1021/je60083a006

    CrossRef Google Scholar

    [23] 梁前勇, 赵静, 夏真, 等.南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨[J].地学前缘, 2017, 24(4): 89-101.

    Google Scholar

    LIANG Qianyong, ZHAO Jing, XIA Zhen, et al. Distribution characteristics and influential factors of dissolved methane in sea water above gas hydrate area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 89-101.

    Google Scholar

    [24] Tilbrook B D, Karl D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre[J]. Marine Chemistry, 1995, 49(1): 51-64. doi: 10.1016/0304-4203(94)00058-L

    CrossRef Google Scholar

    [25] Watanabe S, Higashitani N, Tsurushima N, et al. Methane in the western North Pacific[J]. Journal of Oceanography, 1995, 51(1): 39-60. doi: 10.1007/BF02235935

    CrossRef Google Scholar

    [26] 何雨旸.白云凹陷东南部近海底溶解甲烷浓度变化及其对冷泉活动的指示意义[D].青岛: 中国海洋大学硕士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10423-1014204218.htm

    Google Scholar

    HE Yuyang. Changes of dissolved methane at near sea bottom and its implication to active seep area at southeast Baiyun Sag[D]. Qingdao: Master's Thesis of Ocean University of China, 2014.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(2745) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint