2023 Vol. 42, No. 9
Article Contents

WANG Kun, CAI Zhichao, WANG Xi, WANG Yanhui, LI Xinhao, ZENG Shuishi, LI Tengxin, HAN Yifei. 2023. Time constraints on the closure of the Proto-Tethys Ocean in the western part of the East Kunlun orogenic belt: Evidence from the syn-collision granites in the Muztag area, Xinjiang. Geological Bulletin of China, 42(9): 1556-1570. doi: 10.12097/j.issn.1671-2552.2023.09.011
Citation: WANG Kun, CAI Zhichao, WANG Xi, WANG Yanhui, LI Xinhao, ZENG Shuishi, LI Tengxin, HAN Yifei. 2023. Time constraints on the closure of the Proto-Tethys Ocean in the western part of the East Kunlun orogenic belt: Evidence from the syn-collision granites in the Muztag area, Xinjiang. Geological Bulletin of China, 42(9): 1556-1570. doi: 10.12097/j.issn.1671-2552.2023.09.011

Time constraints on the closure of the Proto-Tethys Ocean in the western part of the East Kunlun orogenic belt: Evidence from the syn-collision granites in the Muztag area, Xinjiang

  • This paper discusses the rock genesis and tectonic environment of the monzonitic granite from the Muztag area in the western part of the East Kunlun orogenic belt, and provides new information for the tectonic evolution of the East Kunlun orogenic belt, through the study of zircon U-Pb ages and geochemical data.LA-ICP-MS zircon U-Pb dating of the medium-coarse and medium-fine grained monzogranites from the Muztag area yield 206Pb/238U ages of 415±4 Ma(MSWD=2.9) and 419±6 Ma(MSWD=4.3), respectively.These geochronological data show that the intrusive rocks were formed in the Early Devonian.Whole-rock geochemical results suggest that the monzonitic granite samples of the Muztag area are characterized by high silicon, low titanium and magnesium contents, as well as large Aluminum Saturation Index(A/CNK) values.These are indicative of calc-alkaline weakly peraluminous granitic series.Moreover, the monzonitic granite samples are relatively enriched in light rare earth elements(LREE) and Rb element, but depleted in high field-strength elements of Nb, Ta, Yb and Y.In combination with the moderate values of CaO/Na2O, low values of Al2O3/TiO2and regional geological data, it is proposed that monzonitic granite of the Muztag area could be formed in the syn-collision tectonic environment and be derived from the continental crust with characteristics of deficient-clay sediments.By compiling previous studies of the East Kunlun belt, it is suggested that closure time of the Proto-Tethys ocean in the East Kunlun orogenic belt has significant spatio-temporal difference characterized by trending from north and central to south direction vertically and by shifting from east to west in the horizontal direction.

  • 加载中
  • [1] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [2] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multi cationic parameters[J]. Chemical Geology, 1985, 48(1): 43-55.

    Google Scholar

    [3] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213.

    Google Scholar

    [4] Cox R, Lowe D R. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover[J]. Journal of Sedimentary Research, 1995, 65: 1-12.

    Google Scholar

    [5] Dong Y P, He D F, Sun S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews 2018, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006

    CrossRef Google Scholar

    [6] Henderson P. Rare Earth Element Geochemistry[M]. Amsterdam: Elsevier, 1984: 276-280.

    Google Scholar

    [7] Jung S, Pfänder J A. Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy, 2007, 19 : 859-870. doi: 10.1127/0935-1221/2007/0019-1774

    CrossRef Google Scholar

    [8] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous mineralsby LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.

    Google Scholar

    [9] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [10] Li R B, Pei X Z, Li Z C, et al. Geochemistry and zircon U-Pb ages of granitic rocks in the Buqingshan tectonic mélange belt, northern Tibet Plateau, China and its implications for proto-Tethyan evolution[J]. Journal of Asian Earth Sciences, 2015, 105: 374-389. doi: 10.1016/j.jseaes.2015.02.004

    CrossRef Google Scholar

    [11] Ludwig K R. User's manual for Isoplot/Ex, version 3.00, a geochronological toolkit for microsoft excel[M]. Berkeley Geochronological Center Special Publication, 2003, 4: 25-32.

    Google Scholar

    [12] Meng F C, Zhang J X, Cui M H. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonicsignificance[J]. Gondwana Research, 2013, 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007

    CrossRef Google Scholar

    [13] Peccerillo R, Taylors S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contribution to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [14] Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [15] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [16] Sláma J, Košler J, Condon D J, et al. Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.

    Google Scholar

    [17] Wiedenbeck M, Allep F, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    CrossRef Google Scholar

    [18] Xiong F H, Ma C Q, Wu L, et al. Geochemistry, zircon U-Pb ages and Sr-Nd-Hf isotopes of an Ordovician appinitic pluton in the East Kunlun orogen: New evidence for Proto-Tethyan subduction[J]. Journal of Asian Earth Sciences, 2015, 111: 681-697. doi: 10.1016/j.jseaes.2015.05.025

    CrossRef Google Scholar

    [19] GB/T 14506.28—2010. 硅酸盐岩石化学分析方法第28部分: 16个主次成分量测定[S]. 中国标准出版社, 2010.

    Google Scholar

    [20] 边千韬, 罗小全, 陈海泓, 等. 阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义[J]. 地质科学, 1999, 34(4): 420-426.

    Google Scholar

    [21] 边千韬, Pospelov I I, 李惠民, 等. 青海省布青山早古生代末期埃达克岩的发现及其构造意义[J]. 岩石学报, 2007, 23(5): 925-934.

    Google Scholar

    [22] 曹世泰, 刘晓康, 马永胜, 等. 祁漫塔格地区早志留世侵入岩的发现及其地质意义[J]. 青海科技, 2011, 18(5): 26-30.

    Google Scholar

    [23] 陈海福, 何书跃, 张爱奎, 等. 东昆仑卡尔却卡地区中志留世A型花岗岩岩石成因及构造环境[J]. 地质通报, 2021, 40(8): 1380-1393.

    Google Scholar

    [24] 崔美慧, 孟繁聪, 吴祥珂. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J]. 岩石学报, 2011, 27(11): 3365-3379.

    Google Scholar

    [25] 郭安林, 张国伟, 孙延贵, 等. 阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征: 玛积雪山古洋脊热点构造证据[J]. 中国科学(D辑), 2006, 36(7): 618-629.

    Google Scholar

    [26] 郭安林, 张国伟, 孙延贵, 等. 共和盆地周缘晚古生代镁铁质火山岩地球化学及空间分布——玛积雪山三联点以及东古特提斯多岛洋启示[J]. 中国科学(D辑), 2007, 37(S1): 249-261.

    Google Scholar

    [27] 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647-1665.

    Google Scholar

    [28] 郝娜娜, 袁万明, 张爱奎, 等. 东昆仑祁漫塔格晚志留世—早泥盆世花岗岩: 年代学、地球化学及形成环境[J]. 地质论评, 2014, 60(1): 201-215.

    Google Scholar

    [29] 姜春发, 杨经绥, 冯秉贵. 昆仑开合构造[M]. 北京: 地质出版社, 1992: 10-115.

    Google Scholar

    [30] 李王晔, 李曙光, 郭安林, 等. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代—早奥陶世多岛洋南界的制约[J]. 中国科学(D辑), 2007, 37(S1): 288-294.

    Google Scholar

    [31] 李王晔. 西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究——对特提斯洋演化的制约[D]. 中国科学技术大学博士学位论文, 2008: 1-124.

    Google Scholar

    [32] 李荣社, 计文化, 杨永成, 等. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008: 68-108.

    Google Scholar

    [33] 李华, 蒋少涌, 李世金, 等. 东昆仑造山带岩浆型镍钴矿床地质特征、成因机制与找矿标志分析[J]. 岩石学报, 2023, 39(4): 1041-1060.

    Google Scholar

    [34] 刘战庆, 裴先治, 李瑞保, 等. 东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动: 来自锆石U-Pb测年及岩石地球化学证据[J]. 中国地质, 2011, 38(5): 1150-1167.

    Google Scholar

    [35] 刘彬, 马昌前, 郭盼, 等. 东昆仑中泥盆世A型花岗岩的确定及其构造意义[J]. 地球科学, 2013a, 38(5): 947-962.

    Google Scholar

    [36] 刘彬, 马昌前, 蒋红安, 等. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 2013b, 29(6): 2093-2106.

    Google Scholar

    [37] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.

    Google Scholar

    [38] 孟繁聪, 崔美慧, 贾丽辉, 等. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据[J]. 岩石学报, 2015, 31(12): 3581-3594.

    Google Scholar

    [39] 潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707.

    Google Scholar

    [40] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 2-28.

    Google Scholar

    [41] 裴先治, 李瑞保, 李佐臣, 等. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 2018, 43(12): 4498-4520.

    Google Scholar

    [42] 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356.

    Google Scholar

    [43] 秦松. 东昆仑造山带西缘刀锋山地区晚古生代—早中生代主要岩浆事件岩石学依据[D]. 成都理工大学博士学位论文, 2021: 1-206.

    Google Scholar

    [44] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 16: 1589-1604.

    Google Scholar

    [45] 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6): 381-401.

    Google Scholar

    [46] 王艺龙, 李艳军, 魏俊浩, 等. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约[J]. 地球科学, 2018, 43(4): 1219-1236.

    Google Scholar

    [47] 王盘喜, 郭峰, 王振宁. 东昆仑祁漫塔格鸭子沟地区花岗岩类岩石年代学、地球化学及地质意义[J]. 现代地质, 2020, 34(5): 987-1000.

    Google Scholar

    [48] 王涛, 李积清, 韩杰, 等. 东昆仑大水沟东地区稀土矿化石英正长岩地球化学、年代学及Hf同位素特征[J]. 地学前缘, 2023, 30(4): 1-16.

    Google Scholar

    [49] 校培喜, 高晓峰, 胡云绪, 等. 阿尔金-东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014: 56-63.

    Google Scholar

    [50] 殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学, 1997, 22(4): 339-342.

    Google Scholar

    [51] 严威, 邱殿明, 丁清风, 等. 东昆仑五龙沟地区猴头沟二长花岗岩年龄暍成因暍源区及其构造意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 443-460.

    Google Scholar

    [52] 杨经绥, 王希斌, 史仁灯, 等. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳[J]. 中国地质, 2004, 31(3): 225-239.

    Google Scholar

    [53] 杨经绥, 许志琴, 李海兵, 等. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 2005, 24(5): 369-380.

    Google Scholar

    [54] 朱云海, 张克信, 王国灿. 东昆仑复合造山带蛇绿岩、岩浆岩及构造岩浆演化[M]. 武汉: 中国地质大学出版社, 2002: 104-105.

    Google Scholar

    [55] 朱小辉, 陈丹玲, 刘良, 等. 柴达木盆地北缘都兰地区旺尕秀辉长杂岩的锆石LA-ICP-MS U-Pb年龄及地质意义[J]. 地质通报, 2010, 29(2): 227-236.

    Google Scholar

    [56] 赵振明, 马华东, 王秉璋, 等. 东昆仑早泥盆世碰撞造山的侵入岩证据[J]. 地质论评, 2008, 54(1): 47-56.

    Google Scholar

    [57] 赵端昌, 蔺新望, 张亚峰, 等. 中阿尔泰造山带北缘早泥盆世构造环境探讨: 来自托普色克他乌地区过铝质花岗岩年代学和地球化学的制约[J]. 矿物岩石, 2019, 39(1): 63-73.

    Google Scholar

    [58] 张亚峰, 裴先治, 丁仨平, 等. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 地质通报, 2010, 29(1): 79-85.

    Google Scholar

    [59] 张航, 王宗起, 马昌前, 等. 东昆仑古特提斯构造带中的原特提斯记录: 来自苦海镁铁质岩块的证据[J]. 地球科学, 2018, 41(4): 1164-1188.

    Google Scholar

    [60] 周能武, 陈邦学, 杨有新, 等. 新疆东昆仑西段库拉甫河岩组火山岩地球化学特征及锆石U-Pb年龄[J]. 地质通报, 2019, 38(5): 757-766.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1422) PDF downloads(79) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint