Citation: | LI Mengxing, WANG Lijuan, ZHANG Liming, WANG Zhiqiang, LUO Dong, LI Zhen. 2023. Petrogenesis of the Huobulin granite in the southern part of the Xing'an Block and its insight into the evolution of the Mongol-Okhotsk Ocean. Geological Bulletin of China, 42(9): 1541-1555. doi: 10.12097/j.issn.1671-2552.2023.09.010 |
The magmatic activity of the Xing'an Block was strong in the Middle and Late Jurassic-Early Cretaceous.A thorough understanding of the genesis and magmatic evolution of the granite in this period, which is of great significance for improving the understanding of the Mesozoic tectonic evolution and guiding the prospecting in this area.In this paper, the Hublin pluton in the southern part of Xing'an Block is comprehensively reported from the perspectives of zircon U-Pb chronology and geochemical characteristics.The study shows that the Hoblin rock body is composed of syenite porphyry and monzonite porphyry, and the former is the main lithology.The emplacement ages are 157 ±1 Ma and 139 ±1 Ma respectively, which were formed in the Late Jurassic and Early Cretaceous, reflecting the tectono-magmatic events of the early Late Mesozoic.In terms of geochemical characteristics, the two lithologies are characterized by moderate degree of differentiation, rich alkali, rich sodium, quasi(weak) aluminum and SiO2-P2O5 negative correlation, combined with the features of high Zr content(276.3×10-6~499.5×10-6) and high zircon saturation temperature(788~881℃), the granite is classified as I-type granite of high potassium calc-alkaline potassium basalt series, which is transitioned to A-type granite.The total rare earth content of rock mass is medium to high, and weak negative europium is abnormal.The light rare earth is enriched while heavy rare earth is deficient, the large ion lithophile elements(Rb, Ba, Th, U, K) are enriched and the high field-strength elements(Ta, Nb, P, Ti) are depleted, especially in enesite porphyry.The crustal thickening and partial melting may be the main formation mechanism of the rock mass, combined with regional tectonic evolution, which was formed in the post-collision environment after the closure of the Mongolian-Okhotz Ocean, and the regional stress field changed from compression to extension.It is further inferred that the closing time of the Mongolian-Okhotz Ocean in the southern part of the Xing'an Block was earlier than 157 ±1 Ma.
[1] | Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic process[J]. Earth and Plantary Science Letters, 1978, 38: 1-25. doi: 10.1016/0012-821X(78)90123-1 |
[2] | Batchelor R A, Bowden P. Petrogentic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1): 43-55. |
[3] | Chappell B W, White A J R. I and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh, Earth Sciences, 1992, 83(1/2): 1-26. |
[4] | Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3 |
[5] | Defant M J, Drummond M S. Derivation of some modern arcmagmas by melting of young subducted lithosphere. [J]. Nature, 1990, 347(18): 662-665. |
[6] | King P L, White A J R, Chappell B W. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371 |
[7] | Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms (2nd Edition)[J]. Cambridge University Press, 2002: 33-39. |
[8] | Maniar P D, Piccoli. Tectonic discrimination of granitoids[J]. The Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
[9] | Morrison W G. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, 13(1): 97-108. doi: 10.1016/0024-4937(80)90067-5 |
[10] | Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 |
[11] | Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constrains at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0 |
[12] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society of London, Specical Publications, 1989, 42(1): 313-345. |
[13] | Taylor S R, Mclennan S M. The geochemical composition of the continental crust[J]. Review of Geophysics, 1995, 3: 956-983. |
[14] | Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magmatypes[J]. Earth Planet. Sci. Lett., 1983, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X |
[15] | Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics discrimination and petrogenesis[J]. Contrib. Miner. Petrol., 1987, 95(4): 407-409. doi: 10.1007/BF00402202 |
[16] | Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Jouranl of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014 |
[17] | 杜继宇, 宋维民, 杨佳林. 大兴安岭中段东福岩体锆石U-Pb年龄、地球化学特征及构造背景[J]. 地质通报, 2020, 39(6): 919-928. |
[18] | 黄始琪, 董树文, 胡建民, 等. 蒙古-鄂霍茨克构造带的形成与演化[J]. 地质学报, 2016, 90(9): 2192-2205. |
[19] | 胡鹏, 段明, 熊金莲, 等. 内蒙古西乌旗沙尔哈达晚侏罗世A型花岗岩: 地球化学特征、岩石成因与动力学背景[J]. 地质通报, 2022, 41(8): 1394-1407. |
[20] | 季根源, 江思宏, 张龙升, 等. 大兴安岭南段毛登高分异碱长花岗岩成岩时代与地球化学特征[J]. 岩石学报, 2022, 38(3): 855-882. |
[21] | 李怀坤, 朱士兴, 相振群, 等. 北京高于庄组凝灰岩的锆石U-Pb定年研究及对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131-2140. |
[22] | 李瑞玲, 段超, 陈志宽, 等. 太行山北段赤瓦屋铜钨矿化区花岗岩岩石的锆石U-Pb年龄及地质意义[J]. 中国地质, 2016, 43(5): 1761-1770. |
[23] | 李文龙, 杨晓平, 钱程, 等. 大兴安岭北段富克山岩浆弧的组成: 对蒙古-鄂霍茨克洋南向俯冲的制约[J]. 地学前缘, 2022, 29(2): 146-163. |
[24] | 李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1): 56-66. |
[25] | 刘凯, 张进江, 葛茂卉, 等. 中生代兴蒙造山带东缘的古太平洋板块俯冲[J]. 矿物岩石地球化学通报, 2016, 35(6): 1098-1108. |
[26] | 内蒙古地质局. 1: 20万乌拉盖幅区域地质调查报告[R]. 1976. |
[27] | 聂秀兰, 候万荣. 内蒙古迪彦钦阿木大型钼-银矿床的发现及地质意义[J]. 地球学报, 2010, 31(3): 469-472. |
[28] | 尚永明, 李小伟, 祝新友, 等. 内蒙古赤峰五十家子岩体成因及其对岩石圈伸展减薄的指示[J]. 中国地质, 2022, 49(4): 1323-1345. |
[29] | 山西省地质调查院. 1: 5万哈达图等4幅区域地质调查报告[R]. 2012. |
[30] | 唐杰, 许文良, 王枫, 等. 古太平洋板块在欧亚大陆的俯冲历史: 东北亚陆缘中生代-古近纪岩浆记录[J]. 中国科学: 地球科学, 2018, 48(5): 549-583. |
[31] | 王金芳, 李英杰, 李红英, 等. 内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U-Pb年龄及构造环境[J]. 地质通报, 2018, 37(2/3): 382-396. |
[32] | 王艺龙, 敖光, 王海鹏, 等. 大兴安岭中段索伦地区早白垩世花岗岩锆石U-Pb年代学、地球化学特征及构造意义[J]. 地质科技情报, 2019, 38(1): 45-57. |
[33] | 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. |
[34] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
[35] | 徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844. |
[36] | 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. |
[37] | 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646. |
[38] | 薛富红, 张晓辉, 邓江夏, 等. 内蒙古中部达来地区晚侏罗世A型花岗岩: 地球化学特征、岩石成因与地质意义[J]. 岩石学报, 2015, 31(6): 1774-1788. |
[39] | 杨小鹏, 王长兵, 李文庆, 等. 大兴安岭北段索图罕地区碱长花岗岩成因及形成构造背景[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1338-1349. |
[40] | 尹志刚, 宫兆民, 张跃龙, 等. 大兴安岭北段伊勒呼里山晚侏罗世二长花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2018, 37(7): 1291-1301. |
[41] | 翟文建, 尤阳阳, 赵焕, 等. 北秦岭碾道奥陶纪碱性正长岩的厘定及其对早古生代构造演化的制约[J]. 地质通报, 2022, 41(11): 1967-1981. |
[42] | 赵院冬, 车继英, 许逢明, 等. 兴安地块东北部晚侏罗世C型埃达克质花岗岩年代学、地球化学特征及构造环境意义[J]. 地学前缘, 2018, 25(6): 240-253. |
[43] | 赵振华. 关于岩石微量元素构造环境判别图解使用的有关问题[J]. 大地构造与成矿学, 2007, 31(1): 92-103. |
[44] | 张旗. 有关埃达克岩实验应用中几个问题的探讨[J]. 岩石矿物学杂志, 2015, 34(2): 257-270. |
[45] | 张晋瑞, 魏春景, 初航, 等. 兴蒙造山带构造演化的新模式: 来自内蒙古中部四期不同类型变质作用的证据[J]. 岩石学报, 2018, 34(10): 2857-2872. |
[46] | 章培春, 彭勃, 赵金忠, 等. 大兴安岭南段海流特高分异花岗岩锆石U-Pb年代学、地球化学及成矿意义[J]. 岩石矿物学杂志, 2022, 41(6): 1029-1046. |
[47] | 张宇婷, 孙丰月, 李予晋, 等. 吉南中侏罗世花岗闪长岩的锆石U-Pb年龄、地球化学及Hf同位素组成[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1675-1687. |
[48] | 周建波, 蒲先刚, 候贺晟, 等. 东北中生代杂岩及对古太平洋向欧亚大陆俯冲历史的制约[J]. 岩石学报, 2018, 34(10): 2845-2856. |
Tectonic sketch map of the eastern Xingmeng Orogenic Belt(a) and simplified geological map of the Huobulin granite(b)
Specimen and photomicrographs of the Huobulin granite
CL images of zircons from the Huobulin granite
U-Pb age concordia diargrams of the Huobulin granite
SiO2-(K2O+Na2O)(a), SiO2-K2O(b) and A/CNK-A/NK(c)diagrams of the Huobulin granite
Chondrite-normalized REE patterns(a) and primitive mantle-normalized spider diagrams(b)of the Huobulin granite
Petrogenetic diagrams of the Huobulin granite
La-La/Yb(a), La-La/Sm(b) and δEu-(La/Yb)N(c)diagrams of the Huobulin granite
Tectonic enevironment discrimination diagrams of the Huobulin granite