2025 Vol. 34, No. 2
Article Contents

YU Qiu-ye, LI Shao-hong, WANG Zhi-yan. TAS-PF: Extended TAS diagram powered with probability field of big data[J]. Geology and Resources, 2025, 34(2): 255-264. doi: 10.13686/j.cnki.dzyzy.2025.02.013
Citation: YU Qiu-ye, LI Shao-hong, WANG Zhi-yan. TAS-PF: Extended TAS diagram powered with probability field of big data[J]. Geology and Resources, 2025, 34(2): 255-264. doi: 10.13686/j.cnki.dzyzy.2025.02.013

TAS-PF: Extended TAS diagram powered with probability field of big data

  • Under the background of big data, the continuous growth of geological data poses challenges to traditional discrimination diagrams represented by TAS: On one hand, the excessive data points within limited diagram space reduce readability and hinder effective visualization; On the other hand, the input of new data into traditional diagrams with outdated original data may lead to perturbation in classification boundaries, compromising the stability of discrimination results and compatibility with existing literature plots. To solve the above problems, this study first extends the previous research on TAS diagrams by constructing category partitions based on spatial positions for various lithology labels in classic diagrams. The discrimination is made then on the basis of spatial relationship between location of the data to be classified and category partitions, with results presented in data table to mitigate readability degradation caused by the increase of data volume. Besides, over 240 000 entries of major element data of igneous rocks are extracted from GEOROC database for TAS visualization and for kernel density analysis in terms of lithologic classification. The corresponding category probability field is constructed across the plotting coordinates based on the analysis results. The probability is calculated by the position of the data to be classified in each probability field, and the probability results of different lithologic labels are compared. Based on probability field, the known lithology label data are used to distinguish the data to be classified, supplement the traditional classification boundary model and form more quantitative discrimination results.

  • 加载中
  • [1] 刘宝珺, 李廷栋. 地质学的若干问题[J]. 地球科学进展, 2001, 16 (5): 607-616. doi: 10.3321/j.issn:1001-8166.2001.05.003

    CrossRef Google Scholar

    Liu B J, Li T D. Some problems of geology[J]. Advances in Earth Science, 2001, 16(5): 607-616. doi: 10.3321/j.issn:1001-8166.2001.05.003

    CrossRef Google Scholar

    [2] 赵鹏大. 定量地学方法及应用[M]. 北京: 高等教育出版社, 2004.

    Google Scholar

    Zhao P D. Quantitative geoscience: Methods and its applications[M]. Beijing: Higher Education Press, 2004.

    Google Scholar

    [3] 黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭印支期高Sr/Y花岗岩类的成因及动力学背景——以同仁地区舍哈力吉岩体为例[J]. 岩石学报, 2014, 30(11): 3255-3270.

    Google Scholar

    Huang X F, Mo X X, Yu X H, et al. Origin and geodynamic settings of the Indosinian high Sr/Y granitoids in the West Qinling: An example from the Shehaliji pluton in Tongren area[J]. Acta Petrologica Sinica, 2014, 30(11): 3255-3270.

    Google Scholar

    [4] 罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241.

    Google Scholar

    Luo M F, Mo X X, Yu X H, et al. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3229-3241.

    Google Scholar

    [5] 罗明非, 莫宣学, 喻学惠, 等. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义[J]. 地学前缘, 2015, 22(5): 182-195.

    Google Scholar

    Luo M F, Mo X H, Yu X H, et al. Zircon U-Pb geochronology, petrogenesis and implication of the Later Permian granodiorite from the Wulonggou area in East Kunlun, Qinhai Province[J]. Earth Science Frontiers, 2015, 22(5): 182-195.

    Google Scholar

    [6] 田子龙, 赵庆英, 李子昊, 等. 内蒙古突泉县姜家屯侏罗纪花岗闪长岩年代学及地球化学特征[J]. 地质与资源, 2017, 26(6): 542-551. doi: 10.3969/j.issn.1671-1947.2017.06.003

    CrossRef Google Scholar

    Tian Z L, Zhao Q Y, Li Z H, et al. Geochronology and geochemistry of the Jurassic Granodiorite in Jiangjiatun, Tuquan County of Inner Mongolia[J]. Geology and Resources, 2017, 26(6): 542-551. doi: 10.3969/j.issn.1671-1947.2017.06.003

    CrossRef Google Scholar

    [7] 张垚垚, 张达, 陈宣华, 等. 哀牢山中段镇沅金矿晚二叠世花岗斑岩U-Pb年代学、岩石地球化学及其构造意义[J]. 岩石学报, 2021, 37(6): 1674-1690, doi: 10.18654/1000-0569/2021.06.03.

    CrossRef Google Scholar

    Zhang Y Y, Zhang D, Chen X H, et al. U-Pb chronology, Lithogeochemistry and tectonic significance of Late Permain granite porphyry in Zhenyuan gold deposit, the middle section of Ailaoshan [J]. Acta Petrologica Sinica, 2021, 37(6): 1674-1690, doi: 10.18654/1000-0569/2021.06.03.

    CrossRef Google Scholar

    [8] 李利阳, 冯欣, 焦晓宇, 等. 大兴安岭乌奴耳地区白音高老组的厘定及其地质意义[J]. 地质与资源, 2024, 33(2): 135-142, 151, doi: 10.13686/j.cnki.dzyzy.2024.02.001.

    CrossRef Google Scholar

    Li L Y, Feng X, Jiao X Y, et al. Determination of the Baiyingaolao Formation in Wunuer area, Daxinganling Mountains: Geological implication[J]. Geology and Resources, 2024, 33(2): 135-142, 151, doi: 10.13686/j.cnki.dzyzy.2024.02.001.

    CrossRef Google Scholar

    [9] 王文东, 刘涛, 周传芳, 等. 黑龙江富源沟晚三叠世中-基性火山岩的厘定及地质意义[J]. 地质与资源, 2023, 32(6): 670-680, doi: 10.13686/j.cnki.dzyzy.2023.06.003.

    CrossRef Google Scholar

    Wang W D, Liu T, Zhou C F, et al. Identification of the late Triassic Fuyuangou intermediate-basic volcanic rocks in Heilongjiang province: geological implication[J]. Geology and Resources, 2023, 32(6): 670-680, doi: 10.13686/j.cnki.dzyzy.2023.06.003.

    CrossRef Google Scholar

    [10] 李晓海, 张海华, 李文博, 等. 大兴安岭甘南地区花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质与资源, 2023, 32(6): 655-663, doi: 10.13686/j.cnki.dzyzy.2023.06.001.

    CrossRef Google Scholar

    Li X H, Zhang H H, Li W B, et al. LA-ICP-MS zircon U-Pb dating and geochemistry of the granites in Gannan area, Daxinganling Mountains: Geological implication[J]. Geology and Resources, 2023, 32(6): 655-663, doi: 10.13686/j.cnki.dzyzy.2023.06.001.

    CrossRef Google Scholar

    [11] 洪文武, 李松彬, 刘钧沅, 等. 大兴安岭北段卜奎沟岩体地球化学和锆石U-Pb年代学研究[J]. 矿产勘查, 2023, 14(7): 1026-1033.

    Google Scholar

    Hong W W, Li S B, Liu J Y, et al. Geochemical and zircon U-Pb geochronology of Pukuigou granite, Northern Great Xing'an Rang[J]. Mineral Exploration, 2023, 14(7): 1026-1033.

    Google Scholar

    [12] 张善明, 胡雅璐, 王根厚, 等. 内蒙古东七一山花岗质杂岩的形成演化及对成矿的贡献: 年代学及地球化学证据[J]. 岩石学报, 2023, 39(6): 1791-1816, doi: 10.18654/1000-0569/2023.06.13.

    CrossRef Google Scholar

    Zhang S M, Hu Y L, Wang G H, et al. Formation, evolution of the granitic complex and its contribution to mineralization in Dongqiyishan deposit, Inner Mongolia: Chronological and geochemical evidences [J]. Acta Petrologica Sinica, 2023, 39(6): 1791-1816, doi: 10.18654/1000-0569/2023.06.13.

    CrossRef Google Scholar

    [13] 高子越, 鞠楠, 李经纬, 等. 吉林延边五凤地区早侏罗世粗面安山岩岩石成因[J]. 地质与资源, 2024, 33(1): 12-23, 40, doi: 10.13686/j.cnki.dzyzy.2024.01.002.

    CrossRef Google Scholar

    Gao Z Y, Ju N, Li J W, et al. Petrogenesis of the Early Jurassic trachyandesite in Wufeng area of Yanbian, Jilin Province[J]. Geology and Resources, 2024, 33(1): 12-23, 40, doi: 10.13686/j.cnki.dzyzy.2024.01.002.

    CrossRef Google Scholar

    [14] 靳立杰, 刘晓, 刘伟, 等. 山东栖霞煌斑岩脉年代学、地球化学特征及其地质意义[J]. 地质与资源, 2024, 33(2): 143-151, doi: 10.13686/j.cnki.dzyzy.2024.02.002.

    CrossRef Google Scholar

    Jin L J, Liu X, Liu W, et al. Geochronology and geochemistry of the lamprophyre dikes in Qixia area, Shandong Province: Geological implication[J]. Geology and Resources, 2024, 33(2): 143-151, doi: 10.13686/j.cnki.dzyzy.2024.02.002.

    CrossRef Google Scholar

    [15] 马维, 马婧轩, 洪阳百合, 等. 嫩江洋闭合时限: 来自早二叠世大乌苏岩体锆石年代学和地球化学的制约[J]. 地质与资源, 2024, 33(3): 267-279, doi: 10.13686/j.cnki.dzyzy.2024.03.001.

    CrossRef Google Scholar

    Ma W, Ma J X, Hong Y B H, et al. Closure time of Nenjiang Ocean: Constrains from zircon geochronology and geochemistry of the Early Permian Dawusu monzogranite[J]. Geology and Resources, 2024, 33(3): 267-279, doi: 10.13686/j.cnki.dzyzy.2024.03.001.

    CrossRef Google Scholar

    [16] 张洪文, 平先权, 黄伟, 等. 黑龙江伊春地区早侏罗世A型花岗岩地球化学特征及构造环境探讨[J]. 地质与资源, 2024, 33(3): 280-290, doi: 10.13686/j.cnki.dzyzy.2024.03.002.

    CrossRef Google Scholar

    Zhang H W, Ping X Q, Huang W, et al. Geochemical characteristics and tectonic environment of the Early Jurassic A-type granites in Yichun area, Heilongjiang Province[J]. Geology and Resources, 2024, 33(3): 280-290, doi: 10.13686/j.cnki.dzyzy.2024.03.002.

    CrossRef Google Scholar

    [17] Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram [J]. Journal of Petrology, 1986, 27: 745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    [18] 王金荣, 陈万峰, 张旗, 等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 2017, 33(3): 993-1005.

    Google Scholar

    Wang J R, Chen W F, Zhang Q, et al. Preliminary research on data mining of N-MORB and E-MORB: Discussion on method of the basalt discrimination diagrams and the character of MORB's mantle source [J]. Acta Petrologica Sinica, 2017, 33(3): 993-1005.

    Google Scholar

    [19] 第鹏飞, 陈万峰, 张旗, 等. 全球N-MORB和E-MORB分类方案对比[J]. 岩石学报, 2018, 34(2): 264-274.

    Google Scholar

    Di P F, Chen W F, Zhang Q, et al. Comparison of global N-MORB and E-MORB classification schemes[J]. Acta Petrologica Sinica, 2018, 34(2): 264-274.

    Google Scholar

    [20] 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展——大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263.

    Google Scholar

    Zhou Y Z, Chen S, Zhang Q, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255-263.

    Google Scholar

    [21] 葛粲, 顾海欧, 汪方跃, 等. 基于数据密度确定分布区域的方法: 以TAS图解分析为例[J]. 地质科学, 2018, 53(4): 1240-1253, doi: 10.12017/dzkx.2018.071.

    CrossRef Google Scholar

    Ge C, Gu H O, Wang F Y, et al. Determination of distribution region based on data density: A case study of TAS diagram[J]. Chinese Journal of Geology, 2018, 53(4): 1240-1253, doi: 10.12017/dzkx.2018.071.

    CrossRef Google Scholar

    [22] 张旗, 葛粲, 焦守涛, 等. 在大数据背景下看TAS分类的不足及可能的解决方案[J]. 地质通报, 2019, 38(12): 1943-1954. doi: 10.12097/j.issn.1671-2552.2019.12.002

    CrossRef Google Scholar

    Zhang Q, Ge C, Jiao S T, et al. The deficiencies and possible solutions of TAS classification in the context of big data[J]. Geological Bulletin of China, 2019, 38(12): 1943-1954. doi: 10.12097/j.issn.1671-2552.2019.12.002

    CrossRef Google Scholar

    [23] 方思源, 董少春, 胡欢. 基于大数据的元素协变图自动绘制软件的设计与实现[J]. 高校地质学报, 2021, 27(1): 73-79.

    Google Scholar

    Fang S Y, Dong S C, Hu H. Design and implementation of an element variation diagram automatic generation software based on big data[J]. Geological Journal of China Universities, 2021, 27(1): 73-79.

    Google Scholar

    [24] 于秋野. 基于高维数据的成矿信息分析——以内蒙古二道河矿床为例[D]. 北京: 中国地质大学, 2019.

    Google Scholar

    Yu Q Y. Analysis of ore-forming information from high-dimensional data: A case study of Erdaohe polymetallic deposit in Inner Mongolia [D]: Beijing: China University of Geosciences, 2019.

    Google Scholar

    [25] Yu Q Y, Bagas L, Yang P H, et al. GeoPyTool: A cross-platform software solution for common geological calculations and plots[J]. Geoscience Frontiers, 2019, 10(4): 1437-1447. doi: 10.1016/j.gsf.2018.08.001

    CrossRef Google Scholar

    [26] Yu Q Y, Zhang X M, Hu B J, et al. Separating volcanic rock groups: A novel method based on principal component analysis and a support vector machine[J]. Arabian Journal of Geosciences, 2021, 14(11): 967. doi: 10.1007/s12517-021-07299-6

    CrossRef Google Scholar

    [27] GEOROC Compilation: Rock types[EB/OL]. https://doi.org/10.25625/2JETOAGEOROCdatabaseon, 2023-12-01.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(449) PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint