Citation: | YU Qiu-ye, LI Shao-hong, WANG Zhi-yan. TAS-PF: Extended TAS diagram powered with probability field of big data[J]. Geology and Resources, 2025, 34(2): 255-264. doi: 10.13686/j.cnki.dzyzy.2025.02.013 |
Under the background of big data, the continuous growth of geological data poses challenges to traditional discrimination diagrams represented by TAS: On one hand, the excessive data points within limited diagram space reduce readability and hinder effective visualization; On the other hand, the input of new data into traditional diagrams with outdated original data may lead to perturbation in classification boundaries, compromising the stability of discrimination results and compatibility with existing literature plots. To solve the above problems, this study first extends the previous research on TAS diagrams by constructing category partitions based on spatial positions for various lithology labels in classic diagrams. The discrimination is made then on the basis of spatial relationship between location of the data to be classified and category partitions, with results presented in data table to mitigate readability degradation caused by the increase of data volume. Besides, over 240 000 entries of major element data of igneous rocks are extracted from GEOROC database for TAS visualization and for kernel density analysis in terms of lithologic classification. The corresponding category probability field is constructed across the plotting coordinates based on the analysis results. The probability is calculated by the position of the data to be classified in each probability field, and the probability results of different lithologic labels are compared. Based on probability field, the known lithology label data are used to distinguish the data to be classified, supplement the traditional classification boundary model and form more quantitative discrimination results.
[1] | 刘宝珺, 李廷栋. 地质学的若干问题[J]. 地球科学进展, 2001, 16 (5): 607-616. doi: 10.3321/j.issn:1001-8166.2001.05.003 Liu B J, Li T D. Some problems of geology[J]. Advances in Earth Science, 2001, 16(5): 607-616. doi: 10.3321/j.issn:1001-8166.2001.05.003 |
[2] | 赵鹏大. 定量地学方法及应用[M]. 北京: 高等教育出版社, 2004. Zhao P D. Quantitative geoscience: Methods and its applications[M]. Beijing: Higher Education Press, 2004. |
[3] | 黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭印支期高Sr/Y花岗岩类的成因及动力学背景——以同仁地区舍哈力吉岩体为例[J]. 岩石学报, 2014, 30(11): 3255-3270. Huang X F, Mo X X, Yu X H, et al. Origin and geodynamic settings of the Indosinian high Sr/Y granitoids in the West Qinling: An example from the Shehaliji pluton in Tongren area[J]. Acta Petrologica Sinica, 2014, 30(11): 3255-3270. |
[4] | 罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241. Luo M F, Mo X X, Yu X H, et al. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3229-3241. |
[5] | 罗明非, 莫宣学, 喻学惠, 等. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义[J]. 地学前缘, 2015, 22(5): 182-195. Luo M F, Mo X H, Yu X H, et al. Zircon U-Pb geochronology, petrogenesis and implication of the Later Permian granodiorite from the Wulonggou area in East Kunlun, Qinhai Province[J]. Earth Science Frontiers, 2015, 22(5): 182-195. |
[6] | 田子龙, 赵庆英, 李子昊, 等. 内蒙古突泉县姜家屯侏罗纪花岗闪长岩年代学及地球化学特征[J]. 地质与资源, 2017, 26(6): 542-551. doi: 10.3969/j.issn.1671-1947.2017.06.003 Tian Z L, Zhao Q Y, Li Z H, et al. Geochronology and geochemistry of the Jurassic Granodiorite in Jiangjiatun, Tuquan County of Inner Mongolia[J]. Geology and Resources, 2017, 26(6): 542-551. doi: 10.3969/j.issn.1671-1947.2017.06.003 |
[7] | 张垚垚, 张达, 陈宣华, 等. 哀牢山中段镇沅金矿晚二叠世花岗斑岩U-Pb年代学、岩石地球化学及其构造意义[J]. 岩石学报, 2021, 37(6): 1674-1690, doi: 10.18654/1000-0569/2021.06.03. Zhang Y Y, Zhang D, Chen X H, et al. U-Pb chronology, Lithogeochemistry and tectonic significance of Late Permain granite porphyry in Zhenyuan gold deposit, the middle section of Ailaoshan [J]. Acta Petrologica Sinica, 2021, 37(6): 1674-1690, doi: 10.18654/1000-0569/2021.06.03. |
[8] | 李利阳, 冯欣, 焦晓宇, 等. 大兴安岭乌奴耳地区白音高老组的厘定及其地质意义[J]. 地质与资源, 2024, 33(2): 135-142, 151, doi: 10.13686/j.cnki.dzyzy.2024.02.001. Li L Y, Feng X, Jiao X Y, et al. Determination of the Baiyingaolao Formation in Wunuer area, Daxinganling Mountains: Geological implication[J]. Geology and Resources, 2024, 33(2): 135-142, 151, doi: 10.13686/j.cnki.dzyzy.2024.02.001. |
[9] | 王文东, 刘涛, 周传芳, 等. 黑龙江富源沟晚三叠世中-基性火山岩的厘定及地质意义[J]. 地质与资源, 2023, 32(6): 670-680, doi: 10.13686/j.cnki.dzyzy.2023.06.003. Wang W D, Liu T, Zhou C F, et al. Identification of the late Triassic Fuyuangou intermediate-basic volcanic rocks in Heilongjiang province: geological implication[J]. Geology and Resources, 2023, 32(6): 670-680, doi: 10.13686/j.cnki.dzyzy.2023.06.003. |
[10] | 李晓海, 张海华, 李文博, 等. 大兴安岭甘南地区花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质与资源, 2023, 32(6): 655-663, doi: 10.13686/j.cnki.dzyzy.2023.06.001. Li X H, Zhang H H, Li W B, et al. LA-ICP-MS zircon U-Pb dating and geochemistry of the granites in Gannan area, Daxinganling Mountains: Geological implication[J]. Geology and Resources, 2023, 32(6): 655-663, doi: 10.13686/j.cnki.dzyzy.2023.06.001. |
[11] | 洪文武, 李松彬, 刘钧沅, 等. 大兴安岭北段卜奎沟岩体地球化学和锆石U-Pb年代学研究[J]. 矿产勘查, 2023, 14(7): 1026-1033. Hong W W, Li S B, Liu J Y, et al. Geochemical and zircon U-Pb geochronology of Pukuigou granite, Northern Great Xing'an Rang[J]. Mineral Exploration, 2023, 14(7): 1026-1033. |
[12] | 张善明, 胡雅璐, 王根厚, 等. 内蒙古东七一山花岗质杂岩的形成演化及对成矿的贡献: 年代学及地球化学证据[J]. 岩石学报, 2023, 39(6): 1791-1816, doi: 10.18654/1000-0569/2023.06.13. Zhang S M, Hu Y L, Wang G H, et al. Formation, evolution of the granitic complex and its contribution to mineralization in Dongqiyishan deposit, Inner Mongolia: Chronological and geochemical evidences [J]. Acta Petrologica Sinica, 2023, 39(6): 1791-1816, doi: 10.18654/1000-0569/2023.06.13. |
[13] | 高子越, 鞠楠, 李经纬, 等. 吉林延边五凤地区早侏罗世粗面安山岩岩石成因[J]. 地质与资源, 2024, 33(1): 12-23, 40, doi: 10.13686/j.cnki.dzyzy.2024.01.002. Gao Z Y, Ju N, Li J W, et al. Petrogenesis of the Early Jurassic trachyandesite in Wufeng area of Yanbian, Jilin Province[J]. Geology and Resources, 2024, 33(1): 12-23, 40, doi: 10.13686/j.cnki.dzyzy.2024.01.002. |
[14] | 靳立杰, 刘晓, 刘伟, 等. 山东栖霞煌斑岩脉年代学、地球化学特征及其地质意义[J]. 地质与资源, 2024, 33(2): 143-151, doi: 10.13686/j.cnki.dzyzy.2024.02.002. Jin L J, Liu X, Liu W, et al. Geochronology and geochemistry of the lamprophyre dikes in Qixia area, Shandong Province: Geological implication[J]. Geology and Resources, 2024, 33(2): 143-151, doi: 10.13686/j.cnki.dzyzy.2024.02.002. |
[15] | 马维, 马婧轩, 洪阳百合, 等. 嫩江洋闭合时限: 来自早二叠世大乌苏岩体锆石年代学和地球化学的制约[J]. 地质与资源, 2024, 33(3): 267-279, doi: 10.13686/j.cnki.dzyzy.2024.03.001. Ma W, Ma J X, Hong Y B H, et al. Closure time of Nenjiang Ocean: Constrains from zircon geochronology and geochemistry of the Early Permian Dawusu monzogranite[J]. Geology and Resources, 2024, 33(3): 267-279, doi: 10.13686/j.cnki.dzyzy.2024.03.001. |
[16] | 张洪文, 平先权, 黄伟, 等. 黑龙江伊春地区早侏罗世A型花岗岩地球化学特征及构造环境探讨[J]. 地质与资源, 2024, 33(3): 280-290, doi: 10.13686/j.cnki.dzyzy.2024.03.002. Zhang H W, Ping X Q, Huang W, et al. Geochemical characteristics and tectonic environment of the Early Jurassic A-type granites in Yichun area, Heilongjiang Province[J]. Geology and Resources, 2024, 33(3): 280-290, doi: 10.13686/j.cnki.dzyzy.2024.03.002. |
[17] | Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram [J]. Journal of Petrology, 1986, 27: 745-750. doi: 10.1093/petrology/27.3.745 |
[18] | 王金荣, 陈万峰, 张旗, 等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 2017, 33(3): 993-1005. Wang J R, Chen W F, Zhang Q, et al. Preliminary research on data mining of N-MORB and E-MORB: Discussion on method of the basalt discrimination diagrams and the character of MORB's mantle source [J]. Acta Petrologica Sinica, 2017, 33(3): 993-1005. |
[19] | 第鹏飞, 陈万峰, 张旗, 等. 全球N-MORB和E-MORB分类方案对比[J]. 岩石学报, 2018, 34(2): 264-274. Di P F, Chen W F, Zhang Q, et al. Comparison of global N-MORB and E-MORB classification schemes[J]. Acta Petrologica Sinica, 2018, 34(2): 264-274. |
[20] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展——大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. Zhou Y Z, Chen S, Zhang Q, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255-263. |
[21] | 葛粲, 顾海欧, 汪方跃, 等. 基于数据密度确定分布区域的方法: 以TAS图解分析为例[J]. 地质科学, 2018, 53(4): 1240-1253, doi: 10.12017/dzkx.2018.071. Ge C, Gu H O, Wang F Y, et al. Determination of distribution region based on data density: A case study of TAS diagram[J]. Chinese Journal of Geology, 2018, 53(4): 1240-1253, doi: 10.12017/dzkx.2018.071. |
[22] | 张旗, 葛粲, 焦守涛, 等. 在大数据背景下看TAS分类的不足及可能的解决方案[J]. 地质通报, 2019, 38(12): 1943-1954. doi: 10.12097/j.issn.1671-2552.2019.12.002 Zhang Q, Ge C, Jiao S T, et al. The deficiencies and possible solutions of TAS classification in the context of big data[J]. Geological Bulletin of China, 2019, 38(12): 1943-1954. doi: 10.12097/j.issn.1671-2552.2019.12.002 |
[23] | 方思源, 董少春, 胡欢. 基于大数据的元素协变图自动绘制软件的设计与实现[J]. 高校地质学报, 2021, 27(1): 73-79. Fang S Y, Dong S C, Hu H. Design and implementation of an element variation diagram automatic generation software based on big data[J]. Geological Journal of China Universities, 2021, 27(1): 73-79. |
[24] | 于秋野. 基于高维数据的成矿信息分析——以内蒙古二道河矿床为例[D]. 北京: 中国地质大学, 2019. Yu Q Y. Analysis of ore-forming information from high-dimensional data: A case study of Erdaohe polymetallic deposit in Inner Mongolia [D]: Beijing: China University of Geosciences, 2019. |
[25] | Yu Q Y, Bagas L, Yang P H, et al. GeoPyTool: A cross-platform software solution for common geological calculations and plots[J]. Geoscience Frontiers, 2019, 10(4): 1437-1447. doi: 10.1016/j.gsf.2018.08.001 |
[26] | Yu Q Y, Zhang X M, Hu B J, et al. Separating volcanic rock groups: A novel method based on principal component analysis and a support vector machine[J]. Arabian Journal of Geosciences, 2021, 14(11): 967. doi: 10.1007/s12517-021-07299-6 |
[27] |
GEOROC Compilation: Rock types[EB/OL]. |
Distribution of igneous rock data entries selected in GEOROC
Contour maps of probability field of selected rock types from GEOROC
Literature data plotted into the extended TAS diagram with probability field