2022 Vol. 43, No. 4
Article Contents

DUAN Zheng, ZHANG Xiang, CHEN Rong, YU Minggang, CHU Pingli, HONG Wentao, CAO Mingxuan. 2022. Advances on volcano monitoring and its implications for volcanic hazards monitoring and early warning in China. East China Geology, 43(4): 391-414. doi: 10.16788/j.hddz.32-1865/P.2022.04.002
Citation: DUAN Zheng, ZHANG Xiang, CHEN Rong, YU Minggang, CHU Pingli, HONG Wentao, CAO Mingxuan. 2022. Advances on volcano monitoring and its implications for volcanic hazards monitoring and early warning in China. East China Geology, 43(4): 391-414. doi: 10.16788/j.hddz.32-1865/P.2022.04.002

Advances on volcano monitoring and its implications for volcanic hazards monitoring and early warning in China

  • A large number of Holocene active volcanoes are distributed in China and adjacent areas, leaving many eruption histories. Monitoring and researching these active volcanoes is a critical process to predict volcanic eruption and respond to volcanic hazards. According to the long-term geological mapping in the Late Mesozoic volcanoes region with deep denudation and the near real-time geophysical and geochemical detection on active volcanic area, the understanding on the composition characteristics, evolution and eruptive style of Mesozoic-Cenozoic continental volcanic rocks in eastern China is significantly enhanced, proving these volcanoes are ideal research objects for continental volcano monitoring. For another, the global volcanic monitoring developed rapidly in recent years with the rising concerns on volcano hazards. In this paper, the main methods and important progress of domestic and overseas continental volcanoes monitoring are systematically reviewed. Furthermore, the development trend of volcanic hazard reduction and prevention in the future, and the development direction of volcano monitoring in China are analyzed. The aim is to provide reference for future research and international cooperation on volcano monitoring, prediction, hazard prevention in China by introducing the work of international volcano monitoring.
  • 加载中
  • [1] MATHER T A, PYLE D M, OPPENHEIMER C. Tropospheric volcanic aerosol[M]. Geophys. Monogr. American Geophysical Union, 2003,139:189-212.

    Google Scholar

    [2] 郭正府, 郑国东, 孙玉涛, 等.中国大陆地质源温室气体释放[J].矿物岩石地球化学通报,2017, 36(2):204-212.

    Google Scholar

    GUO Z F, ZHENG G D, SUN Y T, et al. Greenhouse gases emitted from geological sources in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2017, 36(2):204-212.

    Google Scholar

    [3] GUO Z F, WILSON M, DINGWELL D B, et al. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 2021, 12(1):3891.

    Google Scholar

    [4] RAE J W B, ZHANG Y G, LIU X Q, et al. Atmospheric CO2 over the past 66 million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641.

    Google Scholar

    [5] 周金胜, 王强. 地壳内的岩浆动力学过程及其资源与环境效应[J]. 岩石学报, 2022, 38(5):1399-1418.

    Google Scholar

    ZHOU J S, WANG Q. Magma dynamics in the crust and its resource and environmental effects[J]. Acta Petrologica Sinica, 2022, 38(5):1399-1418.

    Google Scholar

    [6] FURTNEY M A, PRITCHARD M E, BIGGS J, et al. Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring[J]. Journal of Volcanology and Geothermal Research, 2018, 365(OCT.1):38-56.

    Google Scholar

    [7] LOUGHLIN S C, SPARKS S, BROWN S K, et al. Populations around Holocene volcanoes and development of a Population Exposure Index[J]. Global Volcanic Hazards and Risk, 2015(4):223-232.

    Google Scholar

    [8] GLOBAL VOLCANISM PROGRAM. Report on Hunga Tonga-Hunga Ha'apai (Tonga)[R]. Bulletin of the Global Volcanism Network, 2022, 47:2.

    Google Scholar

    [9] BLAKE S. Volcanoes//ALDERTON D, ELIAS S A. Encyclopedia of Geology (Second Edition)[M].Pittsburgh:Academic Press, 2021:1-19.

    Google Scholar

    [10] FERRUCCI F, PRATA F, AMELUNG F, et al. Perspectives concerning satellite EO and geohazard risk management:volcanic hazards[C]. European Space Agency, Santorini, Greece, 2012.

    Google Scholar

    [11] GLOBAL VOLCANISM PROGRAM. Report on Hunga Tonga-Hunga Ha'apai (Tonga)//SENNERT S K. Weekly Volcanic Activity Report[R]. Smithsonian Institution and US Geological Survey, 12 January-18 January, 2022.

    Google Scholar

    [12] WALKER G P L. The Taupo pumice:product of the most powerful known (ultraplinian) eruption?[J]. Journal of Volcanology and Geothermal Research, 1980(8):395-407.

    Google Scholar

    [13] BACHMANN O, BERGANTZ G. The Magma Reservoirs That Feed Supereruptions[J]. Elements, 2008(4):17-21.

    Google Scholar

    [14] CASHMAN K V, SPARKS R S J, BLUNDY J D. Vertically extensive and unstable magmatic systems:a unified view of igneous processes[J]. Science, 2017, 355(6331):eaag3055.

    Google Scholar

    [15] PRITCHARD M E, GREGG P M. Geophysical evidence for silicic crustal melt in the continents:where, what kind, and how much?[J]. Elements, 2016, 12:121-127.

    Google Scholar

    [16] CASSIDY M, MANGA M, CASHMAN K. Controls on explosive-effusive volcanic eruption styles[J]. Nature Communications, 2018, 9(1):2839.

    Google Scholar

    [17] 陶奎元, 吴岩, 黄光昭, 等. 娘娘山古火山口的构造和岩相特征[J]. 地质学报, 1978(1):40-52.

    Google Scholar

    TAO K Y, WU Y, HUANG G Z, et al. The structural and facies characteristics of Niangniangshan paleocalder[J]. Acta Geoscientica Sinica, 1978(1):40-52.

    Google Scholar

    [18] 陶奎元, 薛怀民.论南京娘娘山碱性岩浆房的梯度及其成因机制[J]. 岩石矿物学杂志, 1989, 8(4):289-298.

    Google Scholar

    TAO K Y, XUE H M. The Characteristics and Origin of Graditent in Niangniangshan Alkaline Magma Chamber[J]. Acta Petrologica et Mineralgica, 1989, 8(4):289-298.

    Google Scholar

    [19] 陶奎元, 高天钧,陆志刚, 等.东南沿海火山岩基底构造及火山-侵入作用与成矿系统[M]. 北京:地质出版社, 1998:1-371.

    Google Scholar

    TAO K Y, GAO T J, LU Z G, et al., Basement tectonics of volcanics and volcanic-intrusive complex in southeast China. Beijing:Geological Publishing House, 1998:1-371.

    Google Scholar

    [20] 尹家衡, 王占宇, 陶奎元, 等. 桐庐火山-构造洼地基本特征及演化[J]. 中国地质科学南京地质矿产研究所所刊, 1985, 6(4):1-16.

    Google Scholar

    YIN J H, WANG Z Y, TAO K Y, et al., Tonglu volcano-tecnonic depression:basic features and its evolution[J]. Bull. Nanjing Inst. Geol. M. R. Chinese Acad. Geol. Sci, 1985, 6(4):1-16.

    Google Scholar

    [21] 冯宗帜, 亓润章, 黄水兴, 等. 福建永泰-德化地区火山地质及火山岩含矿性. 南京地质矿产研究所所刊, 1991, 12(增刊):1-100.

    Google Scholar

    FENG Z Z, QI R Z, HUANG S X, et al., Mesozoic volcanology and mineralization related to volcanics in Yongtai-Dehua District, Fujian Province.Bull. Nanjing Inst. Geol. M. R. Chinese Acad. Geol. Sci, 1991, 12(supp):1-100.

    Google Scholar

    [22] 谢家莹, 陶奎元, 黄光昭.中国东南大陆中生代火山岩带的火山岩相类型[J]. 火山地质与矿产, 1994,15(4):45-51.

    Google Scholar

    XIE J Y, TAO K Y, HUANG G Z. The volcanic facies types of Mesozoic terrane in southeast China continent[J]. Volcanology & Mineral Resources, 1994, 15(4):45-51.

    Google Scholar

    [23] 谢家莹, 陶奎元, 尹家衡, 等.中国东南大陆中生代火山地质及火山-侵入杂岩[M]. 北京:地质出版社, 1996:1-277.

    Google Scholar

    XIE J Y, TAO K Y, YIN J H, et al. Mesozoic volcanic geology and volcano-intrusive complexes of southeast China continent[M]. Beijing:Geological Publishing House, 1996:1-277.

    Google Scholar

    [24] 谢家莹, 蓝善先, 张德宝.运用火山地质学理论研究竹田头火山机构[J]. 火山地质与矿产, 2000, 21(2):87-95.

    Google Scholar

    XIE J Y, LAN S X, ZHANG D B. The study on revived caldera using volcanology[J]. Volcanology & Mineral Resources, 2000, 21(2):87-95.

    Google Scholar

    [25] 邢光福, 卢清地, 陈荣, 等.华南晚中生代构造体制转折结束时限研——兼与华北燕山地区对比[J]. 地质学报, 2008, 82(4):451-463.

    Google Scholar

    XING G F, LU Q D, CHEN R, et al. Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China——Comparing to the Yanshan Area in North China[J]. Acta Geologica Sinica, 2008, 82(4):451-463.

    Google Scholar

    [26] 邢光福, 陈荣, 杨祝良, 等.东南沿海晚白垩世火山岩浆活动特征及其构造背景[J]. 岩石学报, 2009, 25(1):77-91.

    Google Scholar

    XING G F, CHEN R, YANG Z L, et al. Characteristics, tectonic setting of Late Cretaceous volcanic magmatism in the coastal Southeast China[J]. Acta Petrologica Sinica, 2009, 25(1):77-91.

    Google Scholar

    [27] 段政, 邢光福, 余明刚, 等.浙闽边界区晚中生代火山作用时序与过程分析[J]. 地质论评, 2013, 59(3):454-469.

    Google Scholar

    DUAN Z, XING G F, YU M G, et al. Time Sequence and Geological Process of Late Mesozoic Volcanic Activities in the Area of Zhejiang-Fujian Boundary[J]. Geological Review, 2013, 59(3):454-469.

    Google Scholar

    [28] 段政, 赵希林, 邢光福, 等. 浙闽相邻区白垩纪上下火山岩系成因与壳幔作用对比研究[J]. 地质学报, 2015, 89(2):319-338.

    Google Scholar

    DUAN Z, ZHAO X L, XING G F, et al. Comparison Study of Petrogeneses and Crust-Mantle Interactions between Cretaceous Lower and Upper Volcanic Series in the Adjacent Area of Zhejiang-Fujian Provinces. Acta Geologica Sinica, 2015, 89(2):319-338.

    Google Scholar

    [29] 段政, 邢光福, 余明刚, 等.东南沿海早白垩世火山岩的极低级变质作用研究[J]. 岩石学报, 2018, 34(3):656-668.

    Google Scholar

    DUAN Z, XING G F, YU M G, et al. Very Low-Grade Metamorphism of Early Cretaceous Volcanic rocks in Coastal Southeast China[J]. Acta Petrologica Sinica, 2018, 34(3):656-668.

    Google Scholar

    [30] 段政, 张翔, 卢琴飞, 等.浙江晚中生代雁荡山地貌成因及其与火山构造协同性演化规律研究[J].地质学报, 2022, 96(6):2021-2038.

    Google Scholar

    DUAN Z, ZHANG X, LU Q F, et al. Late Mesozoic geomorphic origin of Yandangshan and its synergistic evolution with volcanic structures in Zhejiang Province[J]. Acta Geologica Sinica, 2022, 96(6):2021-2038.

    Google Scholar

    [31] XING G F, LI J Q, DUAN Z, et al. Mesozoic-Cenozoic Volcanic Cycle and Volcanic Reservoirs in East China[J]. Journal of Earth Science, 2021, 32(4):742-765.

    Google Scholar

    [32] HE Z Y, XU X S. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China:response to the geodynamics of paleo-Pacific plate subduction[J]. Chemical Geology, 2012, 328:208-221.

    Google Scholar

    [33] LIU L, XU X S, ZOU H B. Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China:Petrogenesis and implications for the geodynamics of paleo-Pacific subduction[J]. Lithos, 2012, 154:166-180.

    Google Scholar

    [34] LIU L, XU X S, XIA Y. Cretaceous Pacific plate movement beneath SE China:Evidence from episodic volcanism and related intrusions[J]. Tectonophysics, 2014, 614:170-184.

    Google Scholar

    [35] LIU L, XU X S, XIA Y. Asynchronizing paleo-Pacific slab rollback beneath SE China:Insights from the episodic Late Mesozoic volcanism[J].Gondwana Research, 2016, 37:397-407.

    Google Scholar

    [36] GUO F, FAN W M, LI C W, et al. Multi-stage crust-mantle interaction in SE China:Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces[J]. Lithos, 2012, 150:62-84.

    Google Scholar

    [37] GUO F, WU Y M, ZHANG B, et al. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China:An overview[J]. Earth-Science Reviews, 2021, 212(1):103448.

    Google Scholar

    [38] MENYAILOV I A. Prediction of eruptions using changes in composition of volcanic gases[J]. Bulletin Volcanologique, 1975, 39(1):112-125.

    Google Scholar

    [39] LOUGHLIN E S, SPARKS S, BROWN S, et al. Global Volcanic Hazards and Risk[M]. Cambridge:University Printing House, 2015:1-410.

    Google Scholar

    [40] PRITCHARD M E, SIMONS M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes[J]. Nature, 2002,418(6894):167-171.

    Google Scholar

    [41] MCCORMICK B T, EDMONDS M, MATHER T A, et al. First synoptic analysis of volcanic degassing in Papua New Guinea[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3):1-21.

    Google Scholar

    [42] JAY J A, WELCH M, PRITCHARD M E, et al. Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000 and 2010[J]. Geological Society of London Special Publication, 2013, 380(1):161-185.

    Google Scholar

    [43] BIGNAMI C, CORRADINI S, MERUCCI L, et al. Multi-sensor satellite monitoring of the 2011 Puyheue-Cordon Caulle eruption[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7):2786-2796.

    Google Scholar

    [44] IVERSON R M, DZURISIN D, GARDNER C A, et al. Dynamics of seismogenic volcanic extrusion at mount St. Helens in 2004-2005[J]. Nature, 2006, 444:439-443.

    Google Scholar

    [45] PALLISTER J, MCNUTT S R. Chapter 66-Synthesis of Volcano Monitoring//SIGURDSSON H.The Encyclopedia of Volcanoes (Second Edition)[M].Amsterdam:Academic Press, 2015:1151-1171.

    Google Scholar

    [46] RODGERS M, ROMAN D C, GEIRSSON H, et al. Seismicity accompanying the 1999 eruptive episode at Telica Volcano, Nicaragua[J]. Journal of Volcanology and Geothermal Research, 2013, 265:39-51.

    Google Scholar

    [47] KUSHENDRATNO, PALLISTER J S, KRISTIANTO, et al. Recent explosive eruptions and volcano hazards at Soputan volcano-a basalt stratovolcano in north Sulawesi, Indonesia[J]. Bulletin of Volcanology, 2012, 74(7):1581-1609.

    Google Scholar

    [48] BIGGS J, PRITCHARD M E. Global volcano monitoring:What does it mean when volcanoes deform?[J]. Elements, 2017, 13(1):17-22.

    Google Scholar

    [49] WHITE R, MCCAUSLAND W. Volcano-tectonic earthquakes:A new tool for estimating intrusive volumes and forecasting eruptions[J]. Journal of Volcanology and Geothermal Research, 2016, 309:139-155.

    Google Scholar

    [50] ZOBACK M L, GEIST E, PALLISTER J, et al. Advances in natural hazard science and assessment, 1963-2013[J]. Geological Society of America Bulletin, 2013, 501:81-154.

    Google Scholar

    [51] WAITE G P, CHOUET B A, DAWSON P B. Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms:Interaction of the shallow magmatic and hydrothermal systems[J]. Journal of Geophysical Research, 2008, 113:B02305.

    Google Scholar

    [52] PALLISTER J S, CASHMAN K V, HAGSTRUM J T, et al. Faulting within the Mount St. Helens conduit and implications for volcanic earthquakes[J]. Geological Society of America Bulletin, 2013, 125:359-376.

    Google Scholar

    [53] WAITE G P, CHOUET B A, DAWSON P B. Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms:Interaction of the shallow magmatic and hydrothermal systems[J]. Journal of Geophysics Research, 2008, 113:B02305.

    Google Scholar

    [54] NIU J M, SONG T A. Validation of repetitive volcano-seismic signals in Aso volcano, Japan with distant stations implications of source characterization and remote sensing in un-instrumented volcanoes[J]. Journal of Geophysical Research:Solid Earth, 2022:e2021JB023400.

    Google Scholar

    [55] RIPEPE M, GORDEEV E. Gas bubble dynamics model for shallow volcanic tremor at Stromboli[J]. Journal of Geophysics Research, 1999, 104:10639-10654.

    Google Scholar

    [56] CHOUET B A. A seismic model for the source of long-period events and harmonic tremor, in Volcanic Seismology[M]. New York:Springer, 1992:133-156.

    Google Scholar

    [57] CHOUET B A. New methods and future trends in seismological volcano monitoring, in Monitoring and Mitigation of Volcano Hazards[M]. Berlin:Springer, 1996:23-98.

    Google Scholar

    [58] PALMA J L, CALDER E S, BASUALTO D, et al. Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile[J]. Journal of Geophysical Research, 2008, 113:B10201.

    Google Scholar

    [59] DZURISIN D. Volcano Deformation:Geodetic Monitoring Techniques[M]. Chichester:Springer/Praxis Publishing, 2007:441.

    Google Scholar

    [60] PARKER A L, BIGGS J, LU Z. Investigating long-term subsidence at Medicine Lake Volcano, CA, using multitemporal InSAR. Geophysical Journal International, 2014, 199:844-859.

    Google Scholar

    [61] BIGGS J, EBMEIER S, ASPINALL W, et al. Global link between deformation and volcanic eruption quantified by satellite imagery[J]. Nature Communications, 2014, 5(1):1-7.

    Google Scholar

    [62] CHAUSSARD E, AMELUNG F, AOKI Y. Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series[J]. Journal of Geophysical Research:Solid Earth, 2013, 118:3957-3969.

    Google Scholar

    [63] EBMEIER S, ANDREWS B, ARAYA M, et al. Synthesis of global satellite observations of magmatic and volcanic deformation:Implications for volcano monitoring & the lateral extent of magmatic domains[J]. Journal of Applied Volcanology, 2018, 7(1):1-26.

    Google Scholar

    [64] LU Z, DZURISIN D. InSAR imaging of Aleutian volcanoes//InSAR imaging of Aleutian volcanoes[M].New York:Springer, 2014:87-345.

    Google Scholar

    [65] PINEL V, POLAND M P, HOOPER A. Volcanology:Lessons learned from synthetic aperture radar imagery[J]. Journal of Volcanology and Geothermal Research, 2014, 289:81-113.

    Google Scholar

    [66] REATH K, PRITCHARD M, POLAND M, et al. Thermal, deformation, and degassing remote sensing time series (CE 2000-2017) at the 47 most active volcanoes in Latin Ame[J]. Journal of Geophysical Research:Solid Earth, 2019, 124:195-218.

    Google Scholar

    [67] SPARKS R, BIGGS J, NEUBERG J. Monitoring volcanoes[J]. Science, 2012, 335(6074):1310-1311.

    Google Scholar

    [68] CARICCHI L, BIGGS J, ANNEN C, et al. The influence of cooling, crystallization and re-melting on the interpretation of geodetic signals in volcanic systems. Earth and Planetary Science Letters, 2014, 388:166-174.

    Google Scholar

    [69] CHAUSSARD E, AMELUNG F. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR[J]. Geophysical Research Letter, 2012, 39:L21311.

    Google Scholar

    [70] HUGHES G R, MAHOOD G A. Silicic calderas in arc settings:Characteristics, distribution, and tectonic controls[J].Geological Society of America Bulletin, 2011, 123(7/8):1577-1595.

    Google Scholar

    [71] NEWHALL C G. Volcanology 101 for seismologists//SCHUBERT G, KANAMORI H. Treatise on Geophysics[M].Amsterdam:Elsevier, 2007, 4(12):351-388.

    Google Scholar

    [72] ALBINO F, PINEL V, MASSOL H, et al. Conditions for detection of ground deformation induced by conduit flow and evolution[J]. Journal of Geophysical Research, 2011, 116(B6):B06201.

    Google Scholar

    [73] GOTTSMANN J S, ANGELIS D, FOURNIER N, et al. On the geophysical fingerprint of Vulcanian explosions[J]. Earth and Planetary Science Letters, 2011, 306(1/2):98-104.

    Google Scholar

    [74] PRITCHARD M E, SIMONS M. An InSAR-based survey of volcanic deformation in the southern Andes[J]. Geophysical Research Letter, 2004, 31:L15610.

    Google Scholar

    [75] FOURNIER T J, PRITCHARD M E, RIDDICK S N. Duration, magnitude, and frequency of subaerial volcano deformation events:New results from Latin America using InSAR and a global synthesis[J]. Geochemistry, Geophysics, Geosystems, 2010, 11:Q01003.

    Google Scholar

    [76] CASTRO J M, BINDEMAN I N, TUFFEN H, et al. Explosive origin of silicic lava:textural and δD-H2O evidence for pyroclastic degassing during rhyolite effusion[J]. Earth and Planetary Science Letters, 2014, 405:52-61.

    Google Scholar

    [77] CASSIDY M, CASTRO J M, HELO C, et al. Volatile dilution during magma injections and implications for volcano explosivity[J]. Geology, 2016, 44(12):1027-1030.

    Google Scholar

    [78] CASSIDY M, MANGA M, CASHMAN K. Controls on explosive-effusive volcanic eruption styles[J]. Nature Communications, 2018, 9(1):2839.

    Google Scholar

    [79] POPA R G, BACHMANN O, ELLIS B S, et al. A connection between magma chamber processes and eruptive styles revealed at Nisyros-Yali volcano (Greece)[J]. Journal of Volcanology and Geothermal Research, 2019,387:106666.

    Google Scholar

    [80] POPA R G, DIETRICHV J, BACHMANN O. Effusive-explosive transitions of water-undersaturated magmas:The case study of Methana Volcano, South Aegean Arc[J]. Journal of Volcanology and Geothermal Research, 2020, 399:106884.

    Google Scholar

    [81] GALLE B, JOHANSSON M, RIVERA C, et al. Network for Observation of Volcanic and Atmospheric Change (NOVAC)-A global network for volcanic gas monitoring:Network layout and instrument description[J]. Journal of Geophysical Research:atmospheres, 2010, 115:D05304.

    Google Scholar

    [82] SPARKS R S J. Forecasting volcanic eruptions[J]. Earth and Planetary Science Letters, 2003, 210(1/2):1-15.

    Google Scholar

    [83] LEE S C, KANG N H, PARK M J, et al. A review on volcanic gas compositions related to volcanic activities and non-volcanological effects[J]. Geosciences Journal, 2018, 22(1):183-197.

    Google Scholar

    [84] WERNER C, KELLY P J, DOUKAS M, et al. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska[J]. Journal of Volcanology and Geothermal Research, 2013, 259:270-284.

    Google Scholar

    [85] BRUNO N, CALTABIANO T, GIAMMANCO S, et al. Degassing of SO2 and CO2 at Mount Etna (Sicily) as an indicator of pre-eruptive ascent and shallow emplacement of magma[J]. Journal of Volcanology and Geothermal Research, 2001, 110(1/2):137-153.

    Google Scholar

    [86] GIAMMANCO S, NERI M, SALERNO G G, et al. Evidence for a recent change in the shallow plumbing system of Mt. Etna (Italy):Gas geochemistry and structural data during 2001-2005[J]. Journal of Volcanology and Geothermal Research, 2013, 251:90-97.

    Google Scholar

    [87] JOUSSET P, PALLISTER J, SURONO. The 2010 eruption of Merapi volcano[J]. Journal of Volcanology and Geothermal Research, 2013, 261:1-6.

    Google Scholar

    [88] DUFFELL H J, OPPENHEIMER C, PYLE D M, et al. Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua[J]. Journal of Volcanology and Geothermal Research, 2003, 126:327-339.

    Google Scholar

    [89] SHEVENELL L, GOFF F. Temporal geochemical variations in volatile emissions from Mount St. Helens, USA, 1980-1994[J]. Journal of Volcanology and Geothermal Research, 2000, 99:123-138.

    Google Scholar

    [90] CARAPEZZA M L, INGUAGGIATO S, BRUSCA L, et al. Geochemical precursors of the activity of an open-conduit volcano:the Stromboli 2002-2003 eruptive events[J]. Geophysical Research Letters, 2004, 31:L07620.

    Google Scholar

    [91] LÓPEZ T, USHAKOV S, IZBEKOV P, et al. Constraints on magma processes, subsurface conditions, and total volatile flux at Bezymianny volcano in 2007-2010 from direct and remote volcanic gas measurements[J]. Journal of Volcanology and Geothermal Research, 2013, 263:92-107.

    Google Scholar

    [92] ZOBIN V M, VARLEY N R, GONZÁLEZ M, et al. Monitoring the 2004 andesitic block-lava extrusion at volcán de Colima, México from seismic activity and SO2 emission[J]. Journal of Volcanology and Geothermal Research, 2008, 177:367-377.

    Google Scholar

    [93] SHIMOIKE Y NOTSU K. Continuous chemical monitoring of volcanic gas in Izu-Oshima volcano, Japan[J]. Volcanology and Geothermal Research, 2000, 101:211-221.

    Google Scholar

    [94] OHBA T, SAWA T, TAIRA N, et al. Magmatic fluids of Tatun volcanic group, Taiwan[J]. Applied Geochemistry, 2010, 25:513-523.

    Google Scholar

    [95] 刘国明, 孙鸿雁, 郭峰. 长白山火山最新监测信息[J]. 岩石学报, 2011, 27(10):2905-2911.

    Google Scholar

    LIU G M, SUN H Y, GUO F. The newest monitoring information of Changbaishan volcano, NE China[J]. Acta Petrologica Sinica, 2011, 27(10):2905-2911.

    Google Scholar

    [96] 赵慈平, 冉华, 陈坤华. 腾冲火山区壳内岩浆囊现今温度:来自温泉逸出气体CO2、CH4间碳同位素分馏的估计[J]. 岩石学报,2011, 27(10):2883-2897.

    Google Scholar

    ZHAO C P,RAN H, CHEN K H. Present-day temperatures of magma chambers in the crust beneath Tengchong volcanic field, southwestern China:Estimation from carbon isotopic fractionation between CO2, and CH4 of free gases escaped from thermal springs[J]. Acta Petrologica Sinica, 2011, 27(10):2883-2897.

    Google Scholar

    [97] SELF S. The effects and consequences of very large explosive volcanic eruptions[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2006, 364(1845):2073-2097.

    Google Scholar

    [98] ROBOCK A. Climatic impacts of voleanic eruptions//SIGURDSSON H. The Encyclopedia of Volcanoes. 2nd Edition[M]. Amsterdam:Elsevier, 2015:935-942.

    Google Scholar

    [99] BLACK B A,KARLSTROM L, MATHER T A. The life cycle of large igneous provinces[J]. Nature Reviews Earth & Environment, 2021, 2(12):840-857.

    Google Scholar

    [100] FISCHER T P, MORRISSEY M M, CALVACHE M L, et al. Correlations between SO2 flux and long-period seismicity at Galeras volcano[J]. Nature, 1994, 368:135-137.

    Google Scholar

    [101] DALTON M P, WATSON I M, NADEAU P A, et al. Assessment of the UV camera sulfur dioxide retrieval for point source plumes[J]. Volcanology and Geothermal Research, 2009, 188:358-366.

    Google Scholar

    [102] NADEAU P A, PALMA J L, WAITE G P. Linking volcanic tremor, degassing, and eruption dynamics via SO2 imaging[J]. Geophysical Research Letters, 2011, 38:L01304.

    Google Scholar

    [103] PALMA, J L, CALDER E S, BASUALTO D, et al. Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile[J]. Journal of Geophysical Research, 2008, 113:B10201.

    Google Scholar

    [104] KUMAGAI H, CHOUET B A. Acoustic properties of a crack containing magmatic or hydrothermal fluids[J]. Journal of Geophysical Research, 2000, 105:25493-25512.

    Google Scholar

    [105] SYMONDS R B, ROSE W I, BLUTH G J S. et al. Volcanic-gas studies:methods, results, and applications[J]. Reviews in Mineralogy and Geochemistry, 1994, 30:1-66.

    Google Scholar

    [106] GERLACH T M. Evaluation and restoration of the 1970 volcanic gas analyses from Mount Etna, Sicily[J]. Journal of Volcanology and Geothermal Research, 1979, 6:165-178.

    Google Scholar

    [107] GIGGENBACH W F, MARTINI M, CORAZZA E. The effects of hydrothermal processes on the chemistry of some recent volcanic gas discharges[J]. Periodico Di Mineralogia, 1986, 55:15-28.

    Google Scholar

    [108] GIGGENBACH W F. Chemical composition of volcanic gases//SCARPA R, TILLING R I. Monitoring and Mitigation of Volcano Hazards[M]. Berlin:Springer-Verlag, 1996:221-256.

    Google Scholar

    [109] GIGGENBACH W F, TEDESCO D, SULISTIYO Y, et al. Evaluation of results from the fourth and fifth IAVCEI field workshops on volcanic gases, Vulcano island, Italy and Java, Indonesia[J]. Journal of Volcanology and Geothermal Research, 2001, 108:157-172.

    Google Scholar

    [110] TARAN Y A, ROZHKOV A M, SERAFIMOVA E K, et al. Chemical and isotopic composition of magmatic gases from the 1988 eruption of Klyuchevskoy volcano, Kamchatka[J]. Journal of Volcanology and Geothermal Research, 1991, 46:255-263.

    Google Scholar

    [111] ROWE G L, BRANTLEY S L, FERNANDEZ M, et al. Fluid-volcano interaction in an active stratovolcano:the crater lake system of Poas volcano, Costa Rica[J]. Journal of Volcanology and Geothermal Research, 1992, 49:23-51.

    Google Scholar

    [112] ALLARD P. The origin of hydrogen, carbon, sulphur, nitrogen and rare gases in volcanic exhalations:evidence from isotope geochemistry//TAZIEFF H, SABROUX J C. Forecasting Volcanic Events[M]. Amsterdam:Elsevier, 1983:337-386.

    Google Scholar

    [113] GERLACH T M. Evaluation of volcanic gas analyses from Kilauea volcano[J]. Journal of Volcanology and Geothermal Research, 1980, 7:295-317.

    Google Scholar

    [114] DEHN J, DEAN K, ENGLE K. Thermal monitoring of North Pacific volcanoes from space[J]. Geology, 2000, 28:755-758.

    Google Scholar

    [115] GARCES M A, FEE D, MATOZA R. Volcano Acoustics, (Chapter 16)//FAGENTS S A, GREGG T K P, LOPEZ R M C. Modeling Volcanic Processes:The Physics and Mathematics of Volcanism[M]. New York:Cambridge University Press, 2013:359-383.

    Google Scholar

    [116] DEL NEGRO C, CURRENTI G, NAPOLI R, et al. Volcano-magnetic changes accompanying the onset of the 2002~2003 eruption of Mt. Etna (Italy)[J].Earth and Planetary Science Letters, 2004, 229:1-14.

    Google Scholar

    [117] BATTAGLIA M, SEGALL P, ROBERTS C. The mechanics of unrest at long valley caldera, California:constraining the nature of the source using geodetic and micro-gravity data[J]. Journal of Volcanology and Geothermal Research, 2003, 127:219-245.

    Google Scholar

    [118] CARBONE D, ZUCCARELLO, SACCOROTTI G. Analysis of simultaneous gravity and tremor anomalies observed during the 2003-2003 Etna eruption[J]. Earth and Planetary Science Letters, 2006, 245:616-629.

    Google Scholar

    [119] GLOBAL VOLCANISM PROGRAM. Report on Mayon (Philippines)[R]. Bulletin of the Global Volcanism Network, 18:1. Smithsonian Institution, 1993.

    Google Scholar

    [120] GLOBAL VOLCANISM PROGRAM, Report on Toya (Japan)[R]. Bulletin of the Global Volcanism Network, 25:3. Smithsonian Institution, 2000.

    Google Scholar

    [121] BOUDON G, LAJOIE J. The 1902 Peléean deposits in the Fort Cemetery of St. Pierre, Martinique:a model for the accumulation of turbulent nuées ardentes[J]. Journal of Volcanology and Geothermal Research, 1989, 38(1/2):113-129.

    Google Scholar

    [122] GLOBAL VOLCANISM PROGRAM. Report on Nevado del Huila (Colombia)[R]. Smithsonian Institution, Bulletin of the Global Volcanism Network, 2008, 33:1.

    Google Scholar

    [123] AIUPPA A, BURTON M, MURE F, et al. Intercomparison of volcanic gas monitoring methodologies performed on Vulcano Island, Italy[J]. Geophysical Research Letters, 2004, 31(2):L02610.

    Google Scholar

    [124] MCGONIGLE A J S, AIUPPA A, GIUDICE G, et al. Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes[J].Geophysical Research Letters, 2008, 35(6):L06303.

    Google Scholar

    [125] SHINOHARA H. Composition of volcanic gases emitted during repeating Vulcanian eruption stage of Shinmoedake, Kirishima volcano, Japan[J]. Earth Planets and Space, 2013, 65(6):667-675.

    Google Scholar

    [126] 藤田英輔, 魏费翔.日本活动火山监测与减灾[J]. 城市与减灾, 2018(5):78-83.

    Google Scholar

    FUJITA E, WEI F X. Active volcano monitoring and mitigation in Japan[J]. City and Disaster Reduction, 2018(5):78-83.

    Google Scholar

    [127] WEI H Q, LIU G M. GILL J. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China:implications for possible future eruptions[J]. Bulletin of Volcanology, 2013, 75:1-14.

    Google Scholar

    [128] 邹海波, 郭紫佩, 樊祺诚,等. 中国东部全新世火山的镭-钍同位素年代学[J]. 岩石学报, 2020, 36(7):1945-1952.

    Google Scholar

    ZOU H B, GUO Z P, FAN Q C, et al. Holocene volcanoes from eastern China:Constraints from Ra/Th isotope disequilibrium[J]. Acta Petrologica Sinica, 2020, 36(7):1945-1952.

    Google Scholar

    [129] 郭正府, 李晓惠, 张茂亮.火山活动与深部碳循环的关系[J]. 第四纪研究, 2010, 30(3):497-505.

    Google Scholar

    GUO Z F, LI X H, ZHANG M L. Volcanic activities and deep carbon cycle[J]. Quaternary Sciences, 2010, 30(3):497-505.

    Google Scholar

    [130] XU J D, OPPENHEIMER C, HAMMOND J, et al. Active Volcanoes of China[M]. London:Geological Society, Special Publications, 2021:1-14.

    Google Scholar

    [131] 郭正府, 张茂亮, 成智慧, 等. 中国大陆新生代典型火山区温室气体释放的规模及其成因[J]. 岩石学报, 2014, 30(11):3467-3480.

    Google Scholar

    GUO Z F, ZHANG M L, CHENG Z H, et al. Fluxes and genesis of greenhouse gases emissions from typical volcanic fields in China[J]. Acta Petrologica Sinica, 2014, 30(11):3467-3480.

    Google Scholar

    [132] XU J D, LIU G M, WU J P, et al. Recent unrest of Changbaishan volcano, northeast China:A precursor of a future eruption?[J]. Geophysical Research Letters, 2012, 39(16):L16305.

    Google Scholar

    [133] 闫欢欢,王后茂,王维和, 等. 高分五号大气痕量气体差分吸收光谱仪观测数据的火山喷发SO2总量反演[J]. 遥感学报,2021, 25(11):2326-2338.

    Google Scholar

    YAN H H, WANG H M, WANG W H et al. Volcanic SO2 retrieved from GF-5 Environmental trace gas Monitoring Instrument[J]. National Remote Sensing Bulletin, 2021, 25(11):2326-2338.

    Google Scholar

    [134] 陈国浒, 单新建, MOON W M, 等. 基于In SAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究[J]. 地球物理学报, 2008, 51(4):1085-1092.

    Google Scholar

    CHEN G H, SHAN X J, MOON W M, et al. A modeling of the magma chamber beneath the Changbai Mountains volcanic areaconstrained by InSAR and GPS derived defortmation[J]. Journal of Geophysical Research, 2008, 51(4):1085-1092.

    Google Scholar

    [135] JI L Y, XU J D, WANG Q L, et al. Episodic Deformation at Changbaishan Tianchi Volcano, Northeast China during 2004 to 2010, Observed by Persistent Scatterer Interferometric Synthetic Aperture Radar[J]. Journal of Applied Remote Sensing, 2013, 7(1):073499.

    Google Scholar

    [136] 何平, 许才军, 温扬茂, 等. 利用PALSAR数据研究长白山火山活动性[J]. 武汉大学学报(信息科学版, 2015, 40(2):214-221.

    Google Scholar

    HE P, XU C J, WEN Y M, et al. Estimating the Magma Activity of the Changbaishan Vocano with PALSAR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2):214-221.

    Google Scholar

    [137] 季灵运, 王庆良, 崔笃信, 等. 利用SBAS-DIn SAR技术提取腾冲火山区形变时间序列[J]. 大地测量与地球动力学, 2011, 31(4):149-153,159.

    Google Scholar

    JI L Y, WANG Q L, CUI D X, et al. Time Series of deformation in Tengchong volcanic area extracted by SBAS-DInSAR[J]. Journal of Geodesy and Geodynamics, 2011, 31(4):149-153,159.

    Google Scholar

    [138] JI L Y, HU Y, WANG Q, et al. Large-scale Deformation Caused by Dyke Intrusion Beneath Eastern Hainan Island, China Observed Using In SAR[J]. Journal of Geodynamics, 2015, 88:52-58.

    Google Scholar

    [139] 季灵运, 许建东, 赵波, 等. 利用In SAR技术研究新疆阿什库勒火山群现今活动性[J]. 地震地质, 2013, 35(3):532-541.

    Google Scholar

    JI L Y, XU J D, ZHAO B, et al. Present-day activity of ashikule volcanic group from InSAR[J]. Seismology and Geology, 2013, 35(3):532-541.

    Google Scholar

    [140] BELL A, KILBURN C, MAIN I. Volcanic eruptions, real-time forecasting of. Encyclopedia of earthquake engineering[M]. New York:Springer, 2016:3892-3906.

    Google Scholar

    [141] POLAND M. Volcano monitoring from space//LOUGHLIN S C, SPARKS R S J, BROWN S K, et al.Global volcanic hazards and risk[M].2015:311-316.

    Google Scholar

    [142] MCCAFFREY R. The tectonic framework of the Sumatran subduction zone[J]. Annual Review of Earth and Planetary Sciences, 2009, 37(1):345-366.

    Google Scholar

    [143] SIMKIN T, SIEBERT L. Global Volcanism Program. Smithsonian Institution[R]. Global Volcanism Program Digital Information Series, GVP-5, 2002, http://www.volcano.si.edu/education/questions/.

    Google Scholar

    [144] 高丽, 洪文涛, 杨祝良, 等. 浙东小雄破火山晚白垩世火山-侵入杂岩成因及岩浆演化[J]. 华东地质, 2019, 40(3):161-169.

    Google Scholar

    GAO L, HONG W T, YANG Z L, et al. Petrogenesis and magmatic process of Late Cretaceous volcano-intrusive complex from Xiaoxiong Caldrea, Eastern Zhejiang Province[J]. East China Geology, 2019, 40(3):161-169.

    Google Scholar

    [145] 余明刚, 洪文涛, 钱迈平, 等. 浙东象山石浦生物礁灰岩时代厘定及其层位归属[J]. 华东地质, 2021, 42(3):260-268.

    Google Scholar

    YU M G, HONG W T, QIAN M T, et al. Geochronological definition on Shipu biohermal limestone and its regional stratigraphic attribution in Xiangshan, eastern Zhejiang Province[J]. East China Geology, 2021, 42(3):260-268.

    Google Scholar

    [146] PAN B, CHENG T, XU J D, et al. Knowledge base of Cenozoic volcanoes in China[J]. Geological Society, London, Special Publications, 2021, 510:291-304.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2503) PDF downloads(241) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint