2022 Vol. 43, No. 4
Article Contents

YAN Jun. 2022. Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen. East China Geology, 43(4): 375-390. doi: 10.16788/j.hddz.32-1865/P.2022.04.001
Citation: YAN Jun. 2022. Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen. East China Geology, 43(4): 375-390. doi: 10.16788/j.hddz.32-1865/P.2022.04.001

Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen

  • Mesozoic magmatic rocks are widely distributed in the Middle-Lower Yangtze River Belt (MLYRB) and the Dabie Orogen (DB), with the active stages of 135~127 Ma and 133~125 Ma respectively for the volcanic rocks. High potassium calc-alkaline bimodal volcanics and shoshonitic volcanic rocks crop out in the several Mesozoic volcanic basins of the MLYRB. These rocks have consistent characteristics of enriched large ion lithophile elements, depleted high field-strength elements, weak enriched Sr-Nd-Hf isotopies and high radiogenic Pb isotopic components, indicating crustal materials involved into the mantle sources. Among them, the intermediate-basic volcanic rocks derived from enriched lithospheric mantle, which was metasomatized by hydrous melt released from subducted oceanic slab. The late stage super alkaline volcanic rocks originated from the asthenospheric mantle, which suffered matasomatism of the similar metasomatic agent, inferring deepening of the magma source. The Mesozoic volcanic rocks in the DB dominantly include two rock series of high potassium calc-alkaline and super potassic. These rocks show quite different geochemical features from those in the MLYRB, by enriched large ion lithophile elements, depleted high field-strength elements, strongly enriched Sr-Nd-Hf isotopies and low radiogenic Pb isotopic components. The high potassium calc-alkaline volcanic rocks in the DB also derived from enriched lithospheric mantle, but the metasomatic agent was melted form the Indosinian deep subducted continental crust of South China. The late stage super potassic volcanic rocks originated from deeper mantle source, where phengite in the deep subducted continental crust of South China broken down under high pressure. Direct materials contribution from the subducted paleo-Pacific plate imprinted in the mantle-derived volcanic rocks in the MLYRB, but the late Mesozoic magma sources in the DB only recorded information of the Indosinian deep subducted continental crust. The volcanic activities in the two tectonic units indicate a similar process of deepening of magmatic source from early to late, corresponding to low angle subduction and then rollback (ca. 130 Ma) of the paleo-Pacific plate beneath the MLYRB. Due to dynamic triggering of the subduction and rollback of the paleo-Pacific plate, orogenic collapse and lithospheric delamination took place in the DB.
  • 加载中
  • [1] WANG Q, WYMAN D A, XU J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71:2609-2636.

    Google Scholar

    [2] HE Y S, LI S G, HOEFS J, et al. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen:Constraints on the recycled lower continental crust[J]. Lithos, 2013, 156/159:204-217.

    Google Scholar

    [3] YAN J, LIU J M, LI Q Z, et al. In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China:Implications for petrogenesis and geodynamic evolution[J]. Lithos, 2015, 227:57-76.

    Google Scholar

    [4] YAN J, LIU X Q, WANG S N, et al. Metallogenic type controlled by magma source and tectonic regime:Geochemical comparisons of Mesozoic magmatism between the Middle-Lower Yangtze River Belt and the Dabie Orogen, eastern China[J]. Ore Geology Reviews, 2021, 133:104095.

    Google Scholar

    [5] 刘晓强. 大别造山带晚中生代岩浆岩成因及其构造背景[D].合肥:合肥工业大学, 2018.LIU X Q. Petrogenesis and tectonic setting of the late Mesozoic magmatic rocks in the Dabie Orogen[D]. Hefei:Hefei University of Technology, 2018.

    Google Scholar

    [6] 代富强. 大别-苏鲁造山带和华北东南缘白垩纪岩浆岩地球化学研究[D]. 合肥:中国科学技术大学, 2017.DAI F Q. A geochemical study of Cretaceous igneous rocks from the Dabie-Sulu orogenic belt and the southeastern margin of the North China Block[D]. Hefei:University of Science and Technology of China, 2017.

    Google Scholar

    [7] YAN J, LIU H Q, SONG C Z, et al. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications[J]. Chinese Science Bulletin, 2009, 54(16):2895-2904.

    Google Scholar

    [8] 陶奎元, 邢光福, 杨祝良, 等. 浙江中生代火山岩时代厘定和问题讨论:兼评Lapierre等关于浙江中生代火山活动时代的论述[J]. 地质论评, 2000, 46(1):14-21.

    Google Scholar

    TAO K Y, XING G F, YANG Z L, et al. Determination of and discussion in the ages of Mesozoic volcanic rocks in Zhejiang:Comments on the argumentation of Lapierre et al[J]. Geological Review, 2000, 46(1):14-21.

    Google Scholar

    [9] XING G F, LI J Q, DUAN Z, et al. Mesozoic-Cenozoic volcanic cycle and volcanic reservoirs in east China[J]. Journal of Earth Science, 2021, 32:742-765.

    Google Scholar

    [10] DAI F Q, ZHAO Z F, DAI L Q, et al. Slab-Mantle interaction in the petrogenesis of andesitic magmas:Geochemical evidence from postcollisional intermediate volcanic rocks in the Dabie orogen, China[J]. Journal of Petrology, 2016, 57(6):1109-1134.

    Google Scholar

    [11] 董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11):1449-1461.

    Google Scholar

    DONG S W, ZHANG Y Q, LONG C X, et al. Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 2007, 81(11):1449-1461.

    Google Scholar

    [12] MAO J R, LI Z L, YE H M. Mesozoic tectono-magmatic activities in South China:Retrospect and prospect[J]. Science China:Earth Sciences, 2014, 57(12):2853-2877.

    Google Scholar

    [13] WANG Y J, FAN W M, SUN M, et al. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:a case study in the Hunan Province[J]. Lithos, 2007, 96:475-502.

    Google Scholar

    [14] ZHOU X M, LI W X. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326:269-287.

    Google Scholar

    [15] ZHOU X M, SUN T, SHEN W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution[J]. Episodes, 2006, 29:26-33.

    Google Scholar

    [16] LI Z X, LI X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:a flat-slab subduction model[J]. Geology, 2007, 35:179-182

    Google Scholar

    [17] SUN W D, DING X, HU Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262:533-542.

    Google Scholar

    [18] WANG Y J, FAN W M, ZHANG G W, et al. Phanerozoic tectonics of the South China Block:Key observations and controversies[J]. Gondwana Research, 2013, 23:1273-1305.

    Google Scholar

    [19] WANG Y J, ZHANG Y H, FAN W M, et al. Numerical modeling for generation of Indo-Sinian peraluminous granitoids Hunan Province:basaltic underplating vs tectonic thickening[J]. Science in China (series D), 2002, 45:1042-1056.

    Google Scholar

    [20] XIE G Q, MAO J W, LI X W, et al. Late Mesozoic bimodal volcanic rocks in the Jinniu basin, Middle-Lower Yangtze River Belt (YRB), East China:Age, petrogenesis and tectonic implications[J]. Lithos, 2011, 127:144-164.

    Google Scholar

    [21] 闫峻, 史磊, 李全忠, 等. 长江中下游地区怀宁盆地火山岩锆石LA-ICPMS定年[J]. 地质论评, 2013, 59(6):1218-1226.

    Google Scholar

    YAN J, SHI L, LI Q Z, et al. Zircon LA-ICPMS Dating of the Volcanic Rocks from Huaining Basin in the Middle-Lower Yangtze Valley[J]. Geological Review, 2013, 59(6):1218-1226.

    Google Scholar

    [22] 薛怀民, 马芳, 关海燕, 等. 怀宁盆地火山岩的年代学、地球化学及与长江中下游其他火山岩盆地的对比[J]. 中国地质, 2013, 40(3):694-714.

    Google Scholar

    XUE H M, MA F, GUAN H Y, et al. Geochronology and geochemistry of volcanic rocks in Huaining basin in comparison with other basins in the middle-lower Yangtze region[J]. Geology in China, 2013, 40(3):694-714.

    Google Scholar

    [23] ZHOU T F, FAN Y, YUAN F, et al. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance[J]. Science in China (Series D), 2008,51:1470-1482.

    Google Scholar

    [24] 薛怀民, 马芳, 曹光跃. 长江中下游地区晚中生代橄榄玄粗岩系列火山岩:年代学格架、地球化学特征及成因讨论[J]. 地质学报, 2015, 89(8):1380-1401.

    Google Scholar

    XUE H M, MA F, CAO G Y. Late Mesozoic shoshonitic volcanic rocks in the Middle and Lower Yangtze River Reaches:ages, geochemical and genesis[J]. Acta Geologica Sinica, 2015, 89(8):1380-1401.

    Google Scholar

    [25] CHEN L, ZHAO Z F, ZHENG Y F. Origin of andesitic rocks:Geochemical constraints from Mesozoic volcanism in the Luzong basin, South China[J]. Lithos, 2014, 190/191:220-239.

    Google Scholar

    [26] 刘春,闫峻,宋传中,等. 长江中下游繁昌盆地火山岩年代学和地球化学:岩石成因和地质意义[J]. 岩石学报,2012, 28(10):3228-3240.

    Google Scholar

    LIU C, YAN J, SONG C Z, et al. Geochronology and geochemistry of the volcanic rocks from Fanchang basin in the lower Yangtze region:petrogenesis and geological significance[J]. Acta Petrologica Sinica, 2012, 28(10):3228-3240.

    Google Scholar

    [27] 王丽娟, 王汝成, 于津海, 等. 宁芜盆地火山-侵入岩的时代、地球化学特征及其地质意义[J]. 地质学报, 2014, 88(7):1247-1272.

    Google Scholar

    WAGN L J, WANG R C, YU J H, et al. Geochrology, geochemistry of volcanic-intrusive rocks in the Ningwu basin and its geological implication[J]. Acta Geologica Sinica, 2014, 88(7):1247-1272.

    Google Scholar

    [28] TANG Y J, ZHANG H F, YING J F, et al. Rapid eruption of the Ningwu volcanics in eastern China:Response to Cretaceous subduction of the Pacific plate[J]. Geochemistry Geophysics Geosystems, 2013, 14:1703-1721.

    Google Scholar

    [29] 张少琴, 王丽娟, 杨颍鹤. 长江中下游溧水盆地火山岩的时代、地球化学特征及其地质意义[J]. 高校地质学报, 2015, 21(1):15-30.

    Google Scholar

    ZHANG S Q, WANG L J YANG Y H. Geochronology and Geochemistry of Volcanic Rocks in the Lishui Basin in the Middle and Lower Reaches of Yangtze River and its Geological Implications[J]. Geological Journal of China Universities, 2015, 21(1):15-30.

    Google Scholar

    [30] 窦志娟, 杨祝良, 陈志洪, 等.长江中下游成矿带溧水盆地(次)火山岩的年代学及其意义[J]. 矿物岩石, 2015, 35(2):35-31.

    Google Scholar

    DOU Z J, YANG Z L, CHEN Z H, et al. Geochronology and significance of Lishui basin(sub) volcanic rocks of the Yangtze River metallogenic belt[J]. Journal of Mineraology and Petrology, 2015, 35(2):35-31.

    Google Scholar

    [31] 黄皓. 北淮阳白垩纪火山岩的年代学和地球化学研究[D]. 北京:中国地质科学院, 2012.HUANG H. Geochronological and geochemical study on the Mesozoic volcanic rocks in Beihuaiyang belt[D]. Beijing:Chinese Academy of Geological Science, 2012.

    Google Scholar

    [32] GAO X Y, ZHAO T P, ZHAO J H. Petrogenesis of the early Cretaceous volcanic rocks in the North Huaiyang tectono-magmatic unit of the Dabie Orogen, eastern China:Implications for crust-mantle interaction[J]. Journal of Asian Earth Sciences, 2016, 118:51-67.

    Google Scholar

    [33] 夏群科, 郑永飞, DELOULE E.大别山碰撞后火山岩的锆石U-Pb年龄和氧同位素组成[J]. 高校地质学报, 2003, 9(2):163-171.

    Google Scholar

    XIA Q K, ZHENG Y F, DELOULE E. U-Pb Ages and Oxygen Isotope Compositions of Zircons from Post-Collisional Volcanic Rocks of Dabieshan[J]. Geological Journal of China Universities, 2003, 9(2):163-171.

    Google Scholar

    [34] 安徽省区域地质调查队. 1:5万万油店幅区域地质调查报告[R]. 合肥:安徽省区域地质调查队, 1992.Regional Geological Survey Team of Anhui Province. 1:50000 regional geological survey report of Wanyoudian. Hefei:Regional Geological survey Team of Anhui Province,1992.

    Google Scholar

    [35] 杜玉雕, 魏国辉. 安徽庐枞盆地枞阳地区玄武质火山岩地球化学特征及其地质意义[J]. 华东地质,2019, 40(3):188-198.

    Google Scholar

    DU Y D, WEI G H. Geochemical characteristics and geological significance of the basaltic volcanic rocks in the Zongyang area of Luzong basin, Anhui provience[J]. East China Geology, 2019, 40(3):188-198.

    Google Scholar

    [36] 邱检生, 王德滋, 刘洪, 等. 大别造山带北缘后碰撞富钾火山岩:地球化学与岩石成因[J]. 岩石学报, 2002, 18(3):319-330.

    Google Scholar

    QIU J S, WANG D Z, LIU H, et al. Post-collisional potash-rich volcanic rocks in the north margin of Dabie orogenic belt:geochemistry and petrogenesis[J]. Acta Petrologica Sinica, 2002, 18(3):319-330.

    Google Scholar

    [37] BOYNTON W V. Geochemistry of the rare earth elements:meteorite studies//HENDERSON, P. Rare Earth Element Geochemistry[M]. Elservier, 1984:63-114.

    Google Scholar

    [38] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society Special Publications, 1989, 42:313-345.

    Google Scholar

    [39] LI S G, NIE Y H, HART S R, et al. Interaction between subducted continental crust and the mantle -II:Sr and Nd isotopic geochemistry of the syncollisional mafic-ultramafic[J]. Science in China (Series D), 1998, 41:632-638.

    Google Scholar

    [40] LI S G, HUANG F, ZHOU H Y, et al. U-Pb isotopic compositions of the ultrahigh pressure metamorphic (UHPM) rocks from Shuanghe and gneisses from Northern Dabie zone in the Dabie Mountains, central China:Constraint on the exhumation mechanism of UHPM rocks[J]. Science in China (Series D), 2003, 46:200-209.

    Google Scholar

    [41] AMES L, ZHOU G Z, XIONG B C. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China[J]. Tectonics, 1996, 15:472-489.

    Google Scholar

    [42] 张宏飞, 高山, 张本仁, 等. 大别山地壳结构的Pb同位素地球化学示踪[J]. 地球化学, 2001, 30(4):395-401.

    Google Scholar

    ZHANG H F, GAO S, ZHANG B R, et al. Pb isotopic study on crustal structure of Dabie mountains, central China[J]. Geochimica, 2001, 30(4):395-401.

    Google Scholar

    [43] LI S G, JAGOUTZ E, CHEN Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China[J]. Geochimica et Cosmochimica Acta, 2000, 64:1077-1093.

    Google Scholar

    [44] GAO S, LING W L, QIU Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:evidence for Cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63:2071-2088.

    Google Scholar

    [45] CHEN J F, YAN J, XIE Z, et al. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze Region in Eastern China:constrains on sources[J]. Physics and Chemistry of the Earth (A), 2001, 26:719-731.

    Google Scholar

    [46] PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145:325-394.

    Google Scholar

    [47] PATINO DOUCE A E, BEARD J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36:707-738.

    Google Scholar

    [48] RAPP R P, WATSON E B. Dehydration melting of metabasalt at 8~32 kbar:implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36:891-931.

    Google Scholar

    [49] FOLEY S. Petrological characterization of the source components of potassic magmas:geochemical and experimental constraints[J]. Lithos, 1992a, 28:187-204.

    Google Scholar

    [50] FOLEY S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas[J]. Lithos, 1992b, 28:435-453.

    Google Scholar

    [51] FOLEY S F, VENTURELLI G, GREEN D H, et al. The ultrapotassic rocks:characteristics, classification and constraints for petrogenetic models[J]. Earth Science Reviews, 1987, 24:81-134.

    Google Scholar

    [52] MILLER C, SCHEUSTER R, KLOTZLI U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40:1399-1424.

    Google Scholar

    [53] CONTICELLI S, AVANZINELLI R, AMMANNATI E, et al. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean[J]. Lithos, 2015, 232:174-196.

    Google Scholar

    [54] CONTICELLI S, MARCHIONNI S, ROSA D, et al. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano:Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy[J]. Contributions to Mineralogy and Petrology, 2009, 157:41-63.

    Google Scholar

    [55] TAYLOR S R, MCLENNAN S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell, 1985.

    Google Scholar

    [56] RUDNICK R L, GAO S. Composition of the continental crust[J]. Treatise on Geochemistry, 2014, 4:1-51.

    Google Scholar

    [57] ZHENG Y F, CHEN Y X. Continental versus oceanic subduction zones[J]. National Science Review, 2016, 3:495-519.

    Google Scholar

    [58] ZINDLER A, HART S R. Chemical geodynamics[J]. Annual Review of Earth and Planetary Science, 1986, 14:493-571.

    Google Scholar

    [59] MA C Q, EHLERS C, XU C H, et al. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane:constraints from geochemistry and Nd-Sr isotope systematics[J]. Precambrian Research,2000, 102:279-301.

    Google Scholar

    [60] KELEMEN P B, HANGHOJ K, GREENE A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2003, 3:593-659.

    Google Scholar

    [61] ZHENG Y F, XU Z, CHEN L, et al. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Science, 2020, 194:104185.

    Google Scholar

    [62] ZHENG Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10:1223-1254.

    Google Scholar

    [63] KESSEL R, SCHEMIDT M W, ULMER P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180 km depth[J]. Nature, 2005, 437:724-727.

    Google Scholar

    [64] ERSOY E Y, PALMER M R. Eocene Quaternary magmatic activity in the Aegean:Implications for mantle metasomatism and magma genesis in an evolving orogeny[J]. Lithos, 2013, 180/181:5-24.

    Google Scholar

    [65] SCHMIDT M W. Melting of pelitic sediments at subarc depths:2. Melt chemistry, viscosities and a parameterization of melt composition[J]. Chemical Geology, 2015, 404:168-182.

    Google Scholar

    [66] 王元龙, 张旗, 王焰. 宁芜火山岩的地球化学特征及其意义[J]. 岩石学报, 2001, 17(4):565-575.

    Google Scholar

    WANG Y L, ZHANG Q, WANG Y. Geochemical characteristics of volcanic rocks from Ningwu area and its significance[J]. Acta Petrologica Siniea, 2001, 17(4):565-575.

    Google Scholar

    [67] CHEN L, ZHENG Y F, ZHAO Z F. Geochemical constraints on the origin of late Mesozoic andesites from the Ningwu basin in the Middle-Lower Yangtze Valley, South China[J]. Lithos, 2016, 254/255:94-117.

    Google Scholar

    [68] ZHANG H F, GAO S, ZHONG Z, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China[J]. Chemical Geology, 2002, 186:281-299.

    Google Scholar

    [69] ZHENG Y F, CHEN Y X, DAI L Q, et al. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China:Earth Sciences, 2015, 58:1045-1069.

    Google Scholar

    [70] ZHAO Z F, ZHENG Y F. Remelting of subducted continental lithosphere:petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt[J]. Science in China (Series D), 2009, 52:1295-1318.

    Google Scholar

    [71] ZHENG Y F. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology, 2012, 328:5-48.

    Google Scholar

    [72] ZHAO Z F, ZHENG Y F, WEI C S, et al. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China[J]. Chemical Geology, 2008, 253:222-242.

    Google Scholar

    [73] ZHAO Z F, ZHENG Y F, WEI C S, et al. Origin of postcollisional magmatic rocks in the Dabie orogen:implications for crust-mantle interaction and crustal architecture[J]. Lithos, 2011, 126:99-114.

    Google Scholar

    [74] ZHAO Z F, DAI L Q, ZHENG Y F. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction[J]. Scientific Reports, 2013, 3:3413.

    Google Scholar

    [75] ZHAO Z F, DAI L Q, ZHENG Y F. Two types of the crust-mantle interaction in continental subduction zones[J]. Science in China (Series D), 2015, 58:1269-1283.

    Google Scholar

    [76] ZHENG Y F, ZHAO Z F, CHEN Y X. Continental subduction channel processes:Plate interface interaction during continental collision[J]. Chinese Science Bulletin, 2013, 58:4371-4377.

    Google Scholar

    [77] LAMBART S, LAPORTE D, SCHIANO P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts:Review of the experimental constraints[J]. Lithos, 2013, 160/161:14-36.

    Google Scholar

    [78] SCHMIDT M W, POLI S. Devolatilization during subduction//RUDNICK R L. Treatise on Geochemistry (second edition), Volume 4:The Crust[G]. Oxford:Elsevier, 2014:669-701.

    Google Scholar

    [79] YE K, CONG B, YE D. The possible subduction of continental material to depths greater than 200 km[J]. Nature, 2000, 407:734-736.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1173) PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint