2024 Vol. 33, No. 5
Article Contents

LU Bing, ZHANG Jin-tao, XIE Xu, XU Wei, JIANG Shi-long, WU Yang. DETERMINATION OF TRACE MERCURY IN SILICATES BY CATALYTIC PYROLYSIS-COLD ATOMIC ABSORPTION SPECTROPHOTOMETRY[J]. Geology and Resources, 2024, 33(5): 733-738. doi: 10.13686/j.cnki.dzyzy.2024.05.014
Citation: LU Bing, ZHANG Jin-tao, XIE Xu, XU Wei, JIANG Shi-long, WU Yang. DETERMINATION OF TRACE MERCURY IN SILICATES BY CATALYTIC PYROLYSIS-COLD ATOMIC ABSORPTION SPECTROPHOTOMETRY[J]. Geology and Resources, 2024, 33(5): 733-738. doi: 10.13686/j.cnki.dzyzy.2024.05.014

DETERMINATION OF TRACE MERCURY IN SILICATES BY CATALYTIC PYROLYSIS-COLD ATOMIC ABSORPTION SPECTROPHOTOMETRY

  • The measurement of trace mercury in silicates is of great significance to the determination of mercury content in rocks and study of theoretical geochemistry, exploration geochemistry, and ecological and environmental geochemistry. However, the distribution of mercury in silicates is in trace level, which demands high criterion to the detection limits of analytical methods. The accurate measurement of trace mercury in silicates also faces challenges such as the great variation of silicon dioxide contents in silicates, multiple lithology classification, complex interference matrix composition, and element volatilization loss. The direct sampling mercury analyzer, without chemical digestion process (to prevent mercury volatilization loss), using catalytic tubes (to eliminate complex matrix interference) and mercury trapping devices (to reduce the detection limit by enriched element), can provide a solution in line with the development trend of green chemistry technology. In this study, the parameters of direct sampling mercury analyzer are optimized through experiments. The method indicators, including detection limit (0.5×10-9), determination lower limit (2.0×10-9), accuracy (ΔlogC < 0.05) and precision (RSD < 10%, n=12), meet the requirements of Specification of Multi-Target Geochemical Survey in DZ/T 0130-2006, and reach or excel the detection limit (2×10-9) and quantitative lower limit(5×10-9) in GB/T 14506.33-2019 Methods for Petrochemical Analysis of Silicates(Determination of Mercury Content: Hydride Generation-Atomic Fluorescence Spectrometry), which can provide references for determination of trace mercury in silicate samples by atomic fluorescence spectrometry and improvement of green chemistry technology.

  • 加载中
  • [1] 《岩石矿物分析》编委会. 岩石矿物分析(第二分册): 岩石、非金属和黑色金属矿石分析[M]. 4版. 北京: 地质出版社, 2011.

    Google Scholar

    Editorial Board of Rock and Mineral Analysis. Rock and mineral analysis (Volume 2)[M]. 4th ed. Beijing: Geological Publishing House, 2011. (in Chinese)

    Google Scholar

    [2] 迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-648.

    Google Scholar

    Chi Q H. Abundance of mercury in crust, rocks and loose sediments [J]. Geochimica, 2004, 33(6): 641-648.

    Google Scholar

    [3] 李卫东, 贾振清, 赵来社, 等. 壤中汞气测量方法在临江大松树金矿的应用[J]. 吉林地质, 2008, 27(4): 50-53, 73.

    Google Scholar

    Li W D, Jia Z Q, Zhao L S, et al. Application of soil mercury vapor survey method in the Dasongshu gold deposit, Linjiang region[J]. Jilin Geology, 2008, 27(4): 50-53, 73.

    Google Scholar

    [4] 耿增超, 贾宏涛. 土壤学[M]. 2版. 北京: 科学出版社, 2020.

    Google Scholar

    Geng Z C, Jia H T. Soil science[M]. 2nd ed. Beijing: Science Press, 2020.

    Google Scholar

    [5] 郭程程, 张军方, 余志, 等. 汞的土壤地球化学及其环境效应[J]. 环保科技, 2018, 24(4): 40-46.

    Google Scholar

    Guo C C, Zhang J F, Yu Z, et al. Pedogeochemistry of mercury and its environmental effects[J]. Environmental Protection and Technology, 2018, 24(4): 40-46.

    Google Scholar

    [6] 韩永辉, 张明, 张万智. 地质样本中硅酸盐的化学分析[J]. 当代化工研究, 2019(8): 187-188.

    Google Scholar

    Han Y H, Zhang M, Zhang W Z. Chemical analysis of silicates in geological samples[J]. Modern Chemical Research, 2019(8): 187-188.

    Google Scholar

    [7] 曹春华. 地质样品中金属元素的几种检测分析方法的比较[J]. 化工管理, 2019(35): 39-40.

    Google Scholar

    Cao C H. Comparison of several methods for metallic element determination in geological samples[J]. Chemical Enterprise Management, 2019(35): 39-40. (in Chinese)

    Google Scholar

    [8] 胡王艳, 刘桦茜, 叶琼. 原子荧光光谱冷汞法测定碳酸钙中汞含量方法探讨[J]. 化工管理, 2019(26): 46-47.

    Google Scholar

    Hu W Y, Liu H Q, Ye Q. Discussion on determination of mercury content in calcium carbonate by catalytic pyrolysis cold atomic absorption[J]. Chemical Enterprise Management, 2019(26): 46-47. (in Chinese)

    Google Scholar

    [9] 王岚, 张继龙, 黎春, 等. 催化热解冷原子吸收法直接测定铀矿石中的汞[J]. 世界核地质科学, 2020, 37(3): 226-230.

    Google Scholar

    Wang L, Zhang J L, Li C, et al. Direct determination of mercury in uranium ore by catalytic pyrolysis cold atomic absorption[J]. World Nuclear Geoscience, 2020, 37(3): 226-230.

    Google Scholar

    [10] 郭欣, 金泽祥, 汤志勇. 在线流动注射液-液萃取非水介质汞还原原子荧光光谱法的研究及应用[J]. 光谱学与光谱分析, 2002, 22(1): 131-134.

    Google Scholar

    Guo X, Jin Z X, Tang Z Y. Study and application of flow injection liquid-liquid extraction non-aqueous media mercury reduction atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2002, 22(1): 131-134.

    Google Scholar

    [11] 赵小学, 吕利光, 陈纯, 等. 热解炉-金汞齐捕集-原子吸收法测定土壤中汞的注意事项[J]. 化学分析计量, 2015, 24(4): 85-88.

    Google Scholar

    Zhao X X, Lyu L G, Chen C, et al. Attention on the determination of total mercury in soils by pyrogenic furnace-gold amalgam trap-atomic absorption spectrophotometry[J]. Chemical Analysis and Meterage, 2015, 24(4): 85-88.

    Google Scholar

    [12] 纪红兵, 佘远斌. 绿色化学化工基本问题的发展与研究[J]. 化工进展, 2007, 26(5): 605-614.

    Google Scholar

    Ji H B, She Y B. Development and research on basic issues of green chemistry and chemical technology[J]. Chemical Industry and Engineering Progress, 2007, 26(5): 605-614.

    Google Scholar

    [13] 谢涛, 罗艳. 直接测汞仪测定土壤中的总汞[J]. 光谱实验室, 2012, 29(3): 1689-1691.

    Google Scholar

    Xie T, Luo Y. Determination of total mercury in soil by direct mercury analyzer[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(3): 1689-1691.

    Google Scholar

    [14] 黄旭敏. 直接测汞仪测定土壤和沉积物中总汞的方法验证分析[J]. 江西化工, 2022, 38(1): 56-60.

    Google Scholar

    Huang X M. Validation and analysis of direct mercury meter method for determination of total mercury in soil and sediment[J]. Jiangxi Chemical Industry, 2022, 38(1): 56-60.

    Google Scholar

    [15] 罗明贵, 谢毓群, 李通耀, 等. 固体进样直接测定法测定锌精矿中汞[J]. 冶金分析, 2020, 40(9): 57-62.

    Google Scholar

    Luo M G, Xie Y Q, Li T Y, et al. Direct determination of mercury in zinc concentrate by solid sampling[J]. Metallurgical Analysis, 2020, 40(9): 57-62.

    Google Scholar

    [16] 赵超, 王钊, 吴楠, 等. 固体进样-直接测汞仪测定铁矿石中的汞[J]. 现代矿业, 2018, 34(3): 232-233, 238.

    Google Scholar

    Zhao C, Wang Z, Wu N, et al. Determination of mercury in iron ores by solid injection-direct mercury analyzer[J]. Modern Mining, 2018, 34(3): 232-233, 238.

    Google Scholar

    [17] 林建奇. 直接进样测汞仪测定地质样品中汞的应用研究[J]. 地质装备, 2020, 21(2): 27-30.

    Google Scholar

    Lin J Q. Study on the application of direct injection mercury detector in mercury determination of geological samples[J]. Equipment for Geotechnical Engineering, 2020, 21(2): 27-30.

    Google Scholar

    [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 27417-2017合格评定化学分析方法确认和验证指南[S]. 北京: 中国标准出版社, 2017.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 27417-2017 Conformity assessment-Guidance on validation and verification of chemical analytical methods[S]. Beijing: Standards Press of China, 2017.

    Google Scholar

    [19] 中华人民共和国国土资源部. DZ/T 0130-2006地质矿产实验室测试质量管理规范[S]. 北京: 中国标准出版社, 2006.

    Google Scholar

    Ministry of Land and Resources of the People's Republic of China. DZ/T 0130-2006 The specification of testing quality management for geological laboratories[S]. Beijing: Standards Press of China, 2006.

    Google Scholar

    [20] GB/T 14506.33-2019. 硅酸盐岩石化学分析方法第33部分: 砷、锑、铋、汞量测定氢化物发生——原子荧光光谱法[S]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=AF9C78635DB3EADE8DE039FA683833A1.

    Google Scholar

    GB/T 14506.33-2019. Methods for chemical analysis of silicate rocks-Part 33: Determination of arsenic, stibium, bismuth and mercury elements content: Hydride generation atominc fluorescence spectrometry [S]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=AF9C78635DB3EADE8DE039FA683833A1.

    Google Scholar

    [21] 王恒, 赵秀荣, 黎香荣, 等. 碳酸钠固硫-直接测汞仪测定银精矿中汞[J]. 冶金分析, 2020, 40(7): 60-64.

    Google Scholar

    Wang H, Zhao X R, Li X R, et al. Determination of mercury in silver concentrate by direct mercury analyzer with sodium carbonate as sulfur-fixing agent[J]. Metallurgical Analysis, 2020, 40(7): 60-64.

    Google Scholar

    [22] 武汉大学. 分析化学[M]. 6版. 北京: 高等教育出版社, 2020.

    Google Scholar

    Wuhan University. Analytical chemistry[M]. 6th ed. Beijing: Higher Education Press, 2020. (in Chinese)

    Google Scholar

    [23] 郭鸿飞. F检验法和T检验法在方法验证过程中的应用探究[J]. 山西冶金, 2019, 42(4): 114-116.

    Google Scholar

    Guo H F. Research on the application of F-test and T-test in the process of method verification[J]. Shanxi Metallurgy, 2019, 42(4): 114-116.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(4)

Article Metrics

Article views(167) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint