2024 Vol. 33, No. 5
Article Contents

AN Shuai, CHEN Jian-hui, WANG Wei-dan, MA Jian-sheng, ZHAO En-hao, ZHOU Xiao-fan. DETERMINATION OF EXCHANGEABLE BASES IN SOILS OF DIFFERENT pH VALUES BY ICP-AES[J]. Geology and Resources, 2024, 33(5): 725-732. doi: 10.13686/j.cnki.dzyzy.2024.05.013
Citation: AN Shuai, CHEN Jian-hui, WANG Wei-dan, MA Jian-sheng, ZHAO En-hao, ZHOU Xiao-fan. DETERMINATION OF EXCHANGEABLE BASES IN SOILS OF DIFFERENT pH VALUES BY ICP-AES[J]. Geology and Resources, 2024, 33(5): 725-732. doi: 10.13686/j.cnki.dzyzy.2024.05.013

DETERMINATION OF EXCHANGEABLE BASES IN SOILS OF DIFFERENT pH VALUES BY ICP-AES

More Information
  • Exchangeable base is an important index to evaluate soil fertilizer supply, fertilizer conservation and soil buffering ability. There are some problems such as large matrix interference, cumbersome analysis steps and poor reproducibility by traditional measurement method, which uses direct determination after ammonium acetate/ammonium chloride-ethanol extraction. To improve the test precision and efficiency, the extraction solutions of soil with different pH values are optimized, through desalting and redissolving at a high temperature after being dried in a water bath, no ammonium acetate/ammonium chloride matrix matching required for standard curve. The contents of exchangeable K, Na, Mg and Ca are determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) using the same standard curve. The method is used to analyze 4 standard substances for available nutrients of soil, including ASA-11, ASA-14, ASA-16 and ASA-20. The measurement results are all within the range of uncertainty, with the relative error between the measured value and standard value of the 4 elements from -1.32% to +7.27%, the relative standard deviation less than 3.50%, and the maximum relative difference of 9.92%(< 10%), which meets the requirements of analytical test. The method has good reproducibility for soil samples with different pH values, overcoming the shortcomings of being too simple or cumbersome in the traditional analysis process with poor reproducibility, completing the on-line detection of K, Na, Mg and Ca simultaneously, shortening the analysis steps, and improving the analysis efficiency and saving costs.

  • 加载中
  • [1] 杨泽, 刘国栋, 戴慧敏, 等. 黑龙江省兴凯湖平原土壤pH值时空变化特征分析[J]. 地质与资源, 2020, 29(6): 614-620.

    Google Scholar

    Yang Z, Liu G D, Dai H M, et al. Analysis on the spatiotemporal variation of soil pH in Xingkai Lake Plain, Heilongjiang Province[J]. Geology and Resources, 2020, 29(6): 614-620.

    Google Scholar

    [2] 唐贤, 梁丰, 徐明岗, 等. 长期施用化肥对农田土壤pH影响的整合分析[J]. 吉林农业大学学报, 2020, 42(3): 316-321.

    Google Scholar

    Tang X, Liang F, Xu M G, et al. A meta-analysis of effects of long-term application of chemical fertilizer on pH of farmland soil[J]. Journal of Jilin Agricultural University, 2020, 42(3): 316-321.

    Google Scholar

    [3] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2): 160-167.

    Google Scholar

    Xu R K, Li J Y, Zhou S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160-167.

    Google Scholar

    [4] 谷忠元, 康黎, 罗梦娟, 等. 湘东地区典型土壤团聚体稳定性的影响因素[J]. 水土保持通报, 2018, 38(5): 58-63, 69.

    Google Scholar

    Gu Z Y, Kang L, Luo M J, et al. Factors affecting stability of soil aggregate in eastern Hu'nan Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 58-63, 69.

    Google Scholar

    [5] 高健永, 王楚涵, 张慧芳, 等. 复垦土壤团聚体稳定性和胶结物质对不同施肥的响应[J]. 应用与环境生物学报, 2022, 28(4): 1042-1050.

    Google Scholar

    Gao J Y, Wang C H, Zhang H F, et al. Responses of cementing materials to different fertilization regimes and stability of reclaimed soil aggregates[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 1042-1050.

    Google Scholar

    [6] 崔申申, 杜晓丽, 刘殿威, 等. 降雨入渗对下渗设施土壤胶体-重金属共释放迁移的影响[J]. 环境化学, 2022, 41(9): 2842-2849.

    Google Scholar

    Cui S S, Du X L, Liu D W, et al. Influence of rainfall infiltration on soil colloids-heavy metals co-release and co-migration in infiltration column[J]. Environmental Chemistry, 2022, 41(9): 2842-2849.

    Google Scholar

    [7] 张蓉蓉, 蒋代华, 史鼎鼎, 等. 岩溶区棕色石灰土胶体对镉铅的等温吸附特性研究[J]. 农业环境科学学报, 2020, 39(3): 554-562.

    Google Scholar

    Zhang R R, Jiang D H, Shi D D, et al. Isothermal adsorption of cadmium and lead by brown calcareous soil colloids in a karst area[J]. Journal of Agro-Environment Science, 2020, 39(3): 554-562.

    Google Scholar

    [8] 郭春雷, 李娜, 彭靖, 等. 秸秆直接还田及炭化还田对土壤酸度和交换性能的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1205-1213.

    Google Scholar

    Guo C L, Li N, Peng J, et al. Direct returning of maize straw or as biochar to the field triggers change in acidity and exchangeable capacity in soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1205-1213.

    Google Scholar

    [9] 田圣贤, 冯盼, 杨山, 等. 东北阔叶红松林腐殖质层土壤阳离子交换性能及其主要影响因素[J]. 生态学杂志, 2018, 37(9): 2549-2558.

    Google Scholar

    Tian S X, Feng P, Yang S, et al. Soil cation exchange capacity and its main impact factors in the humic layer of broadleaved Korean pine forest in Northeast China[J]. Chinese Journal of Ecology, 2018, 37(9): 2549-2558.

    Google Scholar

    [10] 谢玉俊, 李燕猛, 魏建强. 振荡浸提电感耦合等离子体发射光谱法同时测定土壤中速效钾及交换性钙、镁[J]. 中国土壤与肥料, 2020(3): 224-227.

    Google Scholar

    Xie Y J, Li Y M, Wei J Q. Simultaneous determination of soil available potassium and exchangeable calcium and magnesium by inductively coupled plasma emission spectrometry with oscillating extraction[J]. Soil and Fertilizer Sciences in China, 2020(3): 224-227.

    Google Scholar

    [11] 段九存, 和振云, 李瑞仙, 等. 电感耦合等离子体发射光谱法测定膨润土中的交换性阳离子钙镁钾钠[J]. 岩矿测试, 2013, 32(2): 244-248.

    Google Scholar

    Duan J C, He Z Y, Li R X, et al. Determination of exchangeable cations of Ca, Mg, K and Na in bentonite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 244-248.

    Google Scholar

    [12] 岳中慧, 龙寿坤, 郭子强, 等. 超声交换-抽滤淋洗-全自动凯氏定氮法测定土壤中阳离子交换量[J]. 理化检验-化学分册, 2022, 58(2): 197-201.

    Google Scholar

    Yue Z H, Long S K, Guo Z Q, et al. Determination of cation exchange capacity in soil by automatic Kjeldahl nitrogen method after ultrasonic exchange and suction filtration leaching[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(2): 197-201.

    Google Scholar

    [13] 张思文, 陈晓辉, 童灵, 等. 土壤交换性钙和镁测定方法的改进研究[J]. 云南农业大学学报(自然科学), 2020, 35(6): 1081-1088.

    Google Scholar

    Zhang S W, Chen X H, Tong L, et al. Method improvement for determination of soil exchangeable calcium and magnesium[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(6): 1081-1088.

    Google Scholar

    [14] 刘静, 彭展, 马慧侠, 等. 偏硼酸锂熔融-火焰原子吸收光谱法测定铝土矿中K2O和Na2O含量的研究[J]. 轻金属, 2022(2): 53-57.

    Google Scholar

    Liu J, Peng Z, Ma H X, et al. Determination of K2O and Na2O content in bauxite by flame atomic absorption spectrometry with lithium metaborate fusion[J]. Light Metals, 2022(2): 53-57.

    Google Scholar

    [15] 墨淑敏, 李爱嫦, 邱长丹, 等. 微波消解-火焰原子吸收光谱法测定氮化铝粉中钾和钠[J]. 冶金分析, 2020, 40(9): 70-74.

    Google Scholar

    Mo S M, Li A C, Qiu C D, et al. Determination of potassium and sodium in aluminum nitride powder by microwave digestion-flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(9): 70-74.

    Google Scholar

    [16] 任嘉欣, 杨文娜, 李忠意, 等. 基体效应对火焰光度计测定土壤和植株钾素含量准确性的影响[J]. 浙江农业学报, 2019, 31(6): 955-962.

    Google Scholar

    Ren J X, Yang W N, Li Z Y, et al. Influence of matrix effect on determination accuracy of potassium content in soil and plant samples by flame photometer[J]. Acta Agriculturae Zhejiangensis, 2019, 31(6): 955-962.

    Google Scholar

    [17] 段勤, 温光和, 杨雪燕, 等. 盐酸超声提取-火焰原子吸收光谱法测定加热不燃烧卷烟烟丝中钾、钙、钠、镁的含量[J]. 理化检验-化学分册, 2022, 58(2): 193-196

    Google Scholar

    Duan Q, Wen G H, Yang X Y, et al. Determination of K, Ca, Na, Mg in heat not burning cigarette by flame atomic absorption spectrometry with hydrochloric acid ultrasonic extraction[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2022, 58(2): 193-196.

    Google Scholar

    [18] 齐海燕, 唐万侠, 方奇. 火焰原子吸收法分析花椒中锰、钙、锌、铁、镁[J]. 中国调味品, 2017, 42(4): 116-118

    Google Scholar

    Qi H Y, Tang W X, Fang Q. Determination of Mn, Ca, Zn, Fe, Mg in Zanthoxylum bungeanum by flame atomic absorption spectrometry [J]. China Condiment, 2017, 42(4): 116-118.

    Google Scholar

    [19] 范卫平. 乙二胺四乙酸滴定法测定钙镁保健食品中钙、镁的含量[J]. 理化检验-化学分册, 2022, 58(4): 473-475

    Google Scholar

    Fan W P. Determination of Ca and Mg in Calcium and Magnesium health products by Ethylenediamine Tetraacetic Acid Titration[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(4): 473-475.

    Google Scholar

    [20] 窦向丽, 张旺强, 黑文龙, 等. 敞开酸溶-电感耦合等离子体发射光谱法测定石煤钒矿中钒铁铝磷[J]. 岩矿测试, 2022, 41(4): 673-679.

    Google Scholar

    Dou X L, Zhang W Q, Hei W L, et al. Determination of vanadium, iron, aluminum and phosphorus in stone coal vanadium ore by ICP-OES with open acid dissolution[J]. Rock and Mineral Analysis, 2022, 41(4): 673-679.

    Google Scholar

    [21] 胡璇. 电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物[J]. 岩矿测试, 2020, 39(6): 954-960.

    Google Scholar

    Hu X. Determination of rare earth oxides in bauxite by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 954-960.

    Google Scholar

    [22] 李恒. 电感耦合等离子体原子发射光谱(ICP-AES)和电感耦合等离子体质谱(ICP-MS)法测定大气降尘中的铅、镉、铬、锌、锰、镍、铜、铊[J]. 中国无机分析化学, 2022, 12(4): 34-39.

    Google Scholar

    Li H. Determination of Pb, Cd, Cr, Zn, Mn, Ni, Cu, Tl in atmospheric dust by ICP-AES and ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(4): 34-39.

    Google Scholar

    [23] 余海, 王世杰. 土壤中钙形态的连续浸提方法[J]. 岩矿测试, 2007, 26(6): 436-440.

    Google Scholar

    Yu H, Wang S J. A new sequential extraction of calcium species in soil samples[J]. Rock and Mineral Analysis, 2007, 26(6): 436-440.

    Google Scholar

    [24] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 162-163.

    Google Scholar

    Huang C Y. Soil science[M]. Beijing: China Agriculture Press, 2000: 162-163.

    Google Scholar

    [25] 马怡飞, 张尼, 魏增, 等. 振荡交换-抽滤淋洗结合凯氏定氮法快速测定土壤中的阳离子交换量[J]. 岩矿测试, 2019, 38(1): 129-135.

    Google Scholar

    Ma Y F, Zhang N, Wei Z, et al. Rapid determination of soil cation exchange capacity by automatic Kjeldahl analyzer after oscillating exchange and suction filtration[J]. Rock and Mineral Analysis, 2019, 38(1): 129-135.

    Google Scholar

    [26] 陶漉, 马东豪, 张丛志, 等. 石灰性土壤团聚体中钙形态特征及其与有机碳含量的关系[J]. 土壤, 2021, 53(4): 715-722.

    Google Scholar

    Tao L, Ma D H, Zhang C Z, et al. Distribution characteristics of calcium forms and their relations with organic carbon content in calcareous soil aggregates[J]. Soils, 2021, 53(4): 715-722.

    Google Scholar

    [27] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 169-170.

    Google Scholar

    Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000: 169-170.

    Google Scholar

    [28] 李雪梅, 廖立兵, 李瑞, 等. 氯化铵-乙醇法测定蛭石的阳离子交换容量[J]. 岩矿测试, 2008, 27(3): 204-206.

    Google Scholar

    Li X M, Liao L B, Li R, et al. Measurement of the cation exchange capacity of vermiculite by ammonium chloride-ethanol method[J]. Rock and Mineral Analysis, 2008, 27(3): 204-206.

    Google Scholar

    [29] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1): 24-31.

    Google Scholar

    Yan Z W. Influences of SO42- on the solubility of calcite and dolomite [J]. Carsologica Sinica, 2008, 27(1): 24-31.

    Google Scholar

    [30] 盛金昌, 吴彦青, 白柯含, 等. 不同溶液渗透溶蚀作用下碳酸盐岩渗透特性研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3279-3286.

    Google Scholar

    Sheng J C, Wu Y Q, Bai K H, et al. Study on the permeability evolution of carbonate rocks under seepage corrosion effect of different solutions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3279-3286.

    Google Scholar

    [31] 黄奇波, 覃小群, 程瑞瑞, 等. 硫酸型酸雨参与碳酸盐岩溶蚀的研究进展[J]. 中国岩溶, 2019, 38(2): 149-156.

    Google Scholar

    Huang Q B, Qin X Q, Cheng R R, et al. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks [J]. Carsologica Sinica, 2019, 38(2): 149-156.

    Google Scholar

    [32] 张莉娟, 方蓬达, 王力强, 等. 微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍[J]. 岩矿测试, 2022, 41(5): 798-805.

    Google Scholar

    Zhang L J, Fang P D, Wang L Q, et al. Determination of uranium and thorium in sandstone uranium deposits by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798-805.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(4)

Article Metrics

Article views(252) PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint