[1] |
刘金明. 基于深度卷积神经网络的遥感图像中车辆检测方法研究[D]. 开封: 河南大学, 2020.
Google Scholar
|
[2] |
Liu J M. Research on vehicle detection method in remote sensing images based on deep convolution neural network[D]. Kaifeng: Henan University, 2020.
Google Scholar
|
[3] |
刘天颖, 李文根, 关佶红. 基于深度学习的光学遥感图像目标检测方法综述[J]. 无线电通信技术, 2020, 46(6):624-634.
Google Scholar
|
[4] |
Liu T Y, Li W G, Guan J H. Deep learning based object detection in optical remote sensing images:A survey[J]. Radio Communications Technology, 2020, 46(6):624-634.
Google Scholar
|
[5] |
Cheng G, Han J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28.
Google Scholar
|
[6] |
成喆, 吕京国, 白颖奇, 等. 结合RPN网络与SSD算法的遥感影像目标检测算法[J]. 测绘科学, 2021, 46(4):75-82,99.
Google Scholar
|
[7] |
Cheng Z, Lyu J G, Bai Y Q, et al. High-resolution remote sensing image object detection algorithm combining RPN network and SSD algorithm[J]. Science of Surveying and Mapping, 2021, 46(4):75-82,99.
Google Scholar
|
[8] |
Alam M, Wang J F, Cong G, et al. Convolutional neural network for the semantic segmentation of remote sensing images[J]. Mobile Networks and Applications, 2021, 26:200-215.
Google Scholar
|
[9] |
Ji H, Gao Z, Mei T, et al. Vehicle detection in remote sensing images leveraging on simultaneous super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4):676-680.
Google Scholar
|
[10] |
张昭, 姚国愉, 李雪纯, 等. 基于改进Faster R-CNN算法的小目标车辆检测[J]. 科技创新与应用, 2021(4):28-32.
Google Scholar
|
[11] |
Zhang Z, Yao G Y, Li X C, et al. Small target vehicle detection based on improved Faster-RCNN algorithm[J]. Science and Technology Innovation and Application, 2021(4):28-32.
Google Scholar
|
[12] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.
Google Scholar
|
[13] |
南晓虎, 丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究, 2020(s2):15-21.
Google Scholar
|
[14] |
Nan X H, Ding L. Overview of typical object detection algorithms based on deep learning[J]. Application Research of Computers, 2020(s2):15-21.
Google Scholar
|
[15] |
Girshick R. Fast R-CNN[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015:1440-1448.
Google Scholar
|
[16] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
Google Scholar
|
[17] |
罗峰. 基于超分辨率迁移学习的遥感图像车辆检测[D]. 厦门: 厦门大学, 2017.
Google Scholar
|
[18] |
Luo F. Vehicle detection in remote sensing images based on super-resolution transfer learning[D]. Xiamen: Xiamen University, 2017.
Google Scholar
|
[19] |
Deng Z P, Hao S, Zhou S L, et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8):3652-3664.
Google Scholar
|
[20] |
Liu K, Mattyus G. Fast multiclass vehicle detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1938-1942.
Google Scholar
|
[21] |
王雪, 隋立春, 李顶萌, 等. 区域卷积神经网络用于遥感影像车辆检测[J]. 公路交通科技, 2018, 35(3):103-108.
Google Scholar
|
[22] |
Wang X, Sui L C, Li D M, et al. Regional convolutional neural network for vehicle detection in remote sensing images[J]. Journal of Electronics and Information Technology, 2018, 35(3):103-108.
Google Scholar
|
[23] |
高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12):2812-2819.
Google Scholar
|
[24] |
Gao X, Li H, Zhang Y, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12):2812-2819.
Google Scholar
|
[25] |
阳理理. 基于人工神经网络的遥感图像车辆检测[D]. 南宁: 广西大学, 2018.
Google Scholar
|
[26] |
Yang L L. Vehicle detection based on artificial neural network in remote sensing images[D]. Nanning: Guangxi University, 2018.
Google Scholar
|
[27] |
孙秉义. 基于遥感图像处理的交通量检测与分析[D]. 上海: 上海交通大学, 2019.
Google Scholar
|
[28] |
Sun B Y. Traffic volume detection and analysis based on remote sensing images processing[D]. Shanghai: Shanghai Jiaotong University, 2019.
Google Scholar
|
[29] |
Xia G S, Bai X, Ding J, et al. DOTA:A large-scale dataset for object detection in aerial images[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2018:3974-3983.
Google Scholar
|
[30] |
黄国捷. 基于深度学习的遥感图像车辆目标检测[D]. 苏州: 苏州大学, 2019.
Google Scholar
|
[31] |
Huang G J. Vehicle target detection from remote sensing images based on deep learning[D]. Suzhou: Soochow University, 2019.
Google Scholar
|
[32] |
Ji H, Gao Z, Mei T, et al. Improved Faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11):1761-1765.
Google Scholar
|
[33] |
Rottensteiner F, Sohn G, Jung J, et al. The ISPRS benchmark on urban object classification and 3D building reconstruction[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012,1-3:293-298.
Google Scholar
|
[34] |
Razakarivony S, Jurie F. Vehicle detection in aerial imagery:A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34:187-203.
Google Scholar
|
[35] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
Google Scholar
|
[36] |
梁哲恒, 黎宵, 邓鹏, 等. 融和多尺度特征注意力的融合遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5):668-676.
Google Scholar
|
[37] |
Liang Z H, Li X, Deng P, et al. Remote sensing images change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):668-676.
Google Scholar
|
[38] |
Yang X, Sun H, Sun X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6:50839-50849.
Google Scholar
|
[39] |
Fu Y, Wu F, Zhao J. Context-Aware and depth wise-based detection on orbit for remote sensing image[C]// 2018 24th International Conference on Pattern Recognition(ICPR).IEEE, 2018:1725-1730.
Google Scholar
|
[40] |
Li Q, Mou L, Xu Q, et al. R3-Net:A deep network for multioriented vehicle detection in aerial images and videos[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):5028-5042.
Google Scholar
|
[41] |
Zhang Z H, Guo W W, Zhu S N, et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1745-1749.
Google Scholar
|
[42] |
林钊. 基于深度学习的遥感图像舰船目标检测与识别[D]. 长沙: 国防科技大学, 2018.
Google Scholar
|
[43] |
Lin Z. Ship detection and recognition in remote sensing images based on deep learning[D]. Changsha: National University of Defense Technology, 2018.
Google Scholar
|
[44] |
刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
Google Scholar
|
[45] |
Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
Google Scholar
|
[46] |
许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8):10-25.
Google Scholar
|
[47] |
Xu D G, Wang L, Li F. A review of typical object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2021, 57(8):10-25.
Google Scholar
|
[48] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:779-788.
Google Scholar
|
[49] |
Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2017:6517-6525.
Google Scholar
|
[50] |
Redmon J, Farhadi A. YOLOv3:An incremental improvement[EB/OL].(2019-12-25)[2021-12-29]. https://arxiv.org/abs/1804.02767 .
Google Scholar
|
[51] |
Bochkovskiy A, Wang C Y, Liao H. YOLOv4:Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2021-12/29]. https://arxiv.org/abs/2004.10934 .
Google Scholar
|
[52] |
Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[J]. Springer,Cham, 2016, 9905:21-37.
Google Scholar
|
[53] |
Fu C, Liu W, Ranga A, et al. DSSD:Deconvolutional single shot detector[EB/OL].(2017-01-23)[2021-12/29]. https://arxiv.org/abs/1701.06659v1 .
Google Scholar
|
[54] |
Tian Z, Shen C H, Chen H, et al. FCOS:Fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE, 2020:9626-9635.
Google Scholar
|
[55] |
李圣琀, 邵峰晶. 基于深度学习的轻量遥感图像车辆检测模型[J]. 工业控制计算机, 2020, 33(6):66-69.
Google Scholar
|
[56] |
Li S H, Shao F J. Vehicle detection model of light weight remote sensing image based on deep learning[J]. Industrial Control Computer, 2020, 33(6):66-69.
Google Scholar
|
[57] |
Etten A V. You only look twice:Rapid multi-scale object detection in satellite imagery[EB/OL].(2018-05-24)[2021-12-29]. https://arxiv.org/abs/1805.09512 .
Google Scholar
|
[58] |
彭新月, 张吴明, 钟若飞. 改进YOLOv3模型的GF-2卫星影像车辆检测[J]. 测绘科学, 2021, 46(12):147-154.
Google Scholar
|
[59] |
Peng X Y, Zhang W M, Zhong R F. GF-2 satellite image vehicle detection based on improved YOLOv3 model[J]. Science of Surveying and Mapping, 2021, 46(12):147-154.
Google Scholar
|
[60] |
汤田玉. 基于深度学习的高分辨率光学遥感影像车辆目标检测方法研究[D]. 长沙: 国防科技大学, 2017.
Google Scholar
|
[61] |
Tang T Y. Deep convolutional neural network based vehicle detection methods on high resolution optical remote sensing images[D]. Changsha: National University of Defense Technology, 2017.
Google Scholar
|
[62] |
侯涛, 蒋瑜. 改进YOLOv4在遥感飞机目标检测中的应用研究[J]. 计算机工程与应用, 2021, 57(12):224-230.
Google Scholar
|
[63] |
Hou T, Jiang Y. Resrarch of improved YOLOv4 in remote sensing aircraft target detection[J]. Computer Engineering and Applications, 2021, 57(12):224-230.
Google Scholar
|
[64] |
赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4):927-937.
Google Scholar
|
[65] |
Zhao P F, Xie L B, Peng L. A deep small target detection algorithm based on attention mechanism[J]. Computer Science and Technolo-gy, 2022, 16(4):927-937.
Google Scholar
|
[66] |
王明阳, 王江涛, 刘琛. 基于关键点的遥感图像旋转目标检测[J]. 电子测量与仪器学报, 2021, 35(6):102-108.
Google Scholar
|
[67] |
Wang M Y, Wang J T, Liu C. Detection of rotating targets in remote sensing images based on key points[J]. Journal of Electronic Measurement and Instrument, 2021, 35(6):102-108.
Google Scholar
|
[68] |
唐建宇, 唐春晖. 基于旋转框和注意力机制的遥感图像目标检测算法[J]. 电子测量技术, 2021, 44(13):114-120.
Google Scholar
|
[69] |
Tang J Y, Tang C H. Remote sensing image target detection algorithm based on rotating frame and attention mechanism[J]. Electronic Measurement Technique, 2021, 44(13):114-120.
Google Scholar
|
[70] |
陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. 武汉: 华中科技大学, 2019.
Google Scholar
|
[71] |
Chen J. Research on maritime target fusion detection in multi-source remote sensing images based on R-YOLO[D]. Wuhan: Huazhong University of Science and Technology, 2019.
Google Scholar
|
[72] |
谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22):247-256.
Google Scholar
|
[73] |
Xie J Z, Peng H, Tang J F, et al. Improved YOLOv4 for dense remote sensing target detection[J]. Computer Engineering and Applications, 2021, 57(22):247-256.
Google Scholar
|
[74] |
杨治佩, 丁胜, 张莉, 等. 无锚点的遥感图像任意角度密集目标检测方法[J]. 计算机应用, 2022, 42(6):1965-1971.
Google Scholar
|
[75] |
Yang Z P, Ding S, Zhang L, et al. An arbitrary angle dense target detection method for remote sensing images without anchor points[J]. Computer Application, 2022, 42(6):1965-1971.
Google Scholar
|
[76] |
张宏群, 班勇苗, 郭玲玲, 等. 基于YOLOv5的遥感图像舰船的检测方法[J]. 电子测量技术, 2021, 44(8):87-92.
Google Scholar
|
[77] |
Zhang H Q, Ban Y M, Guo L L, et al. Remote sensing images ship detection method based on YOLOv5[J]. Electronic Measurement Technology, 2021, 44(8):87-92.
Google Scholar
|
[78] |
张玉莲. 光学图像海面舰船目标智能检测与识别方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
Google Scholar
|
[79] |
Zhang Y L. Research on intelligent detection and recognition metho-ds of ship targets on the sea surface in optical images[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechanics and Physics,CAS), 2021.
Google Scholar
|
[80] |
Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.
Google Scholar
|