[1] |
杨正勇, 刘东, 彭乐威. 中国海水养殖业绿色发展:水平测度、区域对比及发展对策研究[J]. 生态经济, 2021, 37(11):128-135.
Google Scholar
|
[2] |
Yang Z Y, Liu D, Peng L W. Green development of mariculture in China:Estimation,regional comparison and research on development strategy[J]. Ecological Economy, 2021, 37(11):128-135.
Google Scholar
|
[3] |
黄文积, 袁蓓. 高质量发展要求下我国海水养殖业竞争力评价[J]. 中国渔业经济, 2021, 39(4):60-67.
Google Scholar
|
[4] |
Huang W J, Yuan B. Competitiveness evaluation of China’s mariculture industry under the requirements of high-quality development[J]. Chinese Fisheries Economics, 2021, 39(4):60-67.
Google Scholar
|
[5] |
翟路, 孙兆群, 王波, 等. 基于灰色预测模型的我国海洋渔业发展趋势研究[J]. 江苏农业科学, 2019, 47(13):342-346.
Google Scholar
|
[6] |
Zhai L, Sun Z Q, Wang B, et al. Study on development of China’s marine fisheries based on GM (1,1) model[J]. Jiangsu Agricultural Sciences, 2019, 47(13):342-346.
Google Scholar
|
[7] |
郑智腾, 范海生, 王洁, 等. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4):120-129.doi:10.6046/gtzyyg.2020.04.17.
Google Scholar
|
[8] |
Zheng Z T, Fan H S, Wang J, et al. An improved double-branch network method for intelligently extracting marinecage culture area[J]. Remote Sensing for Land and Resources, 2020, 32(4):120-129.doi:10.6046/gtzyyg.2020.04.17.
Google Scholar
|
[9] |
Oyinlola M A, Reygondeau G, Wabnitz C C C, et al. Global estimation of areas with suitable environmental conditions for mariculture species[J]. PLoS One, 2018, 13(1):e191086.
Google Scholar
|
[10] |
Feng Z H, Zhang T, Wang J X, et al. Spatio-temporal features of microplastics pollution in macroalgae growing in an important mariculture area,China[J]. Science of the Total Environment, 2020, 719:137490.
Google Scholar
|
[11] |
武易天, 陈甫, 马勇, 等. 基于Landsat8数据的近海养殖区自动提取方法研究[J]. 国土资源遥感, 2018, 30(3):96-105.doi:10.6046/gtzyyg.2018.03.14.
Google Scholar
|
[12] |
Wu Y T, Chen F, Ma Y, et al. Research on automatic extraction method for coastal aquaculture area using Landsat8 data[J]. Remote Sensing for Land and Resources, 2018, 30(3):96-105.doi:10.6046/gtzyyg.2018.03.14.
Google Scholar
|
[13] |
杨智威, 陈颖彪, 吴志峰, 等. 基于自然区块的城市热环境空间分异性研究[J]. 地理科学进展, 2019, 38(12):1944-1956.
Google Scholar
|
[14] |
Yang Z W, Chen Y B, Wu Z F, et al. Spatial variability of urban thermal environment based on natural blocks[J]. Progress in Geography, 2019, 38(12):1944-1956.
Google Scholar
|
[15] |
李阳, 袁琳, 赵志远, 等. 基于无人机低空遥感和现场调查的潮滩地形反演研究[J]. 自然资源遥感, 2021, 33(3):80-88.doi:10.6046/zrzyyg.2020336.
Google Scholar
|
[16] |
Li Y, Yuan L, Zhao Z Y, et al. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3):80-88.doi:10.6046/zrzyyg.2020336.
Google Scholar
|
[17] |
徐京萍, 赵建华, 张丰收, 等. 面向对象的池塘养殖用海信息提取[J]. 国土资源遥感, 2013, 25(1):82-85.doi:10.6046/gtzyyg.2013.01.15.
Google Scholar
|
[18] |
Xu J P, Zhao J H, Zhang F S, et al. Object-oriented information extraction of pond aquaculture[J]. Remote Sensing for Land and Resources, 2013, 25(1):82-85.doi:10.6046/gtzyyg.2013.01.15.
Google Scholar
|
[19] |
Wang Z H, Yang X M, Liu Y M, et al. Extraction of coastal raft cultivation area with heterogeneous water background by thresholding object-based visually salient NDVI from high spatial resolution imagery[J]. Remote Sensing Letters, 2018, 9(9):839-846.
Google Scholar
|
[20] |
陈思明. 三沙湾海水养殖区时空动态变化及其影响因素[J]. 生态学杂志, 2021, 40(4):1137-1145.
Google Scholar
|
[21] |
Chen S M. Spatiotemporal dynamics of mariculture area in Sansha Bay and its driving factors[J]. Chinese Journal of Ecology, 2021, 40(4):1137-1145.
Google Scholar
|
[22] |
王芳, 夏丽华, 陈智斌, 等. 基于关联规则面向对象的海岸带海水养殖模式遥感识别[J]. 农业工程学报, 2018, 34(12):210-217.
Google Scholar
|
[23] |
Wang F, Xia L H, Chen Z B, et al. Remote sensing identification of coastal zone mariculture modes based on association-rules object-oriented method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12):210-217.
Google Scholar
|
[24] |
Lu Y M, Shao W, Sun J. Extraction of offshore aquaculture areas from medium-resolution remote sensing images based on deep learning[J]. Remote Sensing, 2021, 13(19):3854.
Google Scholar
|
[25] |
Alom M Z, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1):014006.
Google Scholar
|
[26] |
Wei S S, Zhang H, Wang C, et al. Multi-temporal SAR data large-scale crop mapping based on U-Net model[J]. Remote Sensing, 2019, 11(1):68.
Google Scholar
|
[27] |
Cui B G, Fei D, Shao G H, et al. Extracting raft aquaculture areas from remote sensing images via an improved U-Net with a PSE structure[J]. Remote Sensing, 2019, 11(17):2053.
Google Scholar
|
[28] |
Falk T, Mai D, Bensch R, et al. U-Net:Deep learning for cell counting,detection,and morphometry[J]. Nature Methods, 2019, 16(1):67-70.
Google Scholar
|
[29] |
杨瑞, 祁元, 苏阳. 深度学习U-Net方法及其在高分辨卫星影像分类中的应用[J]. 遥感技术与应用, 2020, 35(4):767-774.
Google Scholar
|
[30] |
Yang R, Qi Y, Su Y. U-Net neural networks and its application in high resolution satellite image classification[J]. Remote Sensing Technology and Application, 2020, 35(4):767-774.
Google Scholar
|
[31] |
杨智威, 陈颖彪, 千庆兰, 等. 人口空间化下公共医疗服务水平匹配度评价——以广州市为例[J]. 地理与地理信息科学, 2019, 35(2):74-82.
Google Scholar
|
[32] |
Yang Z W, Chen Y B, Qian Q L, et al. Evaluation of the matching degree of public medical service level based on population spatialization:A case study of Guangzhou[J]. Geography and Geo-Information Science, 2019, 35(2):74-82.
Google Scholar
|
[33] |
Nogueira K, Penatti O A B, Dos S J A. Towards better exploiting convolutional neural networks for remote sensing scene classification[J]. Pattern Recognition, 2017, 61:539-556.
Google Scholar
|
[34] |
Shao Z F, Zhou W X, Deng X Q, et al. Multilabel remote sensing image retrieval based on fully convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:318-328.
Google Scholar
|
[35] |
Freudenberg M, N?lke N, Agostini A, et al. Large-scale palm tree detection in high resolution satellite images using U-Net[J]. Remote Sensing, 2019, 11(3):312.
Google Scholar
|
[36] |
Qin P, Cai Y L, Wang X L. Small waterbody extraction with improved U-Net using Zhuhai-1 hyperspectral remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19:1-5.
Google Scholar
|
[37] |
Liu Z Q, Cao Y W, Wang Y Z, et al. Computer vision-based concrete crack detection using U-Net fully convolutional networks[J]. Automation in Construction, 2019, 104:129-139.
Google Scholar
|
[38] |
Zhang Z, Wu C D, Coleman S, et al. DENSE-Inception U-Net for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2020, 192:105395.
Google Scholar
|
[39] |
Ibtehaz N, Rahman M S. MultiResUNet:Rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121:74-87.
Google Scholar
|
[40] |
杨智威, 陈颖彪, 郑子豪, 等. 广东省A级旅游点空间分布特征与可达性测度[J]. 地理空间信息, 2019, 17(6):51-55.
Google Scholar
|
[41] |
Yang Z W, Chen Y B, Zheng Z H, et al. Spatial accessibility and spatial distribution characteristics of A-grade tourist spots in Guangdong Province[J]. Geospatial Information, 2019, 17(6):51-55.
Google Scholar
|