[1] |
Wernand M R, Novoa S, van der Woerd H, et al. A centuries-long history of participatory science in optical oceanography:From observation to interpretation of natural water colouring[J]. History of Oceanography Yearbook, 2014, 19(20):61-90.
Google Scholar
|
[2] |
Wernand M R. Poseidon’s paintbox:Historical archives of ocean colour in global-change perspective[D]. Utrecht: Utrecht University, 2011.
Google Scholar
|
[3] |
Wernand M R, van der Woerd H J. Spectral analysis of the Forel-Ule ocean colour comparator scale[J]. Journal of the European Optical Society-Rapid Publications, 2010, 5(10014S):1-7.
Google Scholar
|
[4] |
Wernand M R, Hommersom A, van der Woerd H J. MERIS-based ocean colour classification with the discrete Forel-Ule scale[J]. Ocean Science, 2013, 9(3):477-487.
Google Scholar
|
[5] |
Wernand M R, Woerd H J, Gieskes W C. Trends in ocean colour and chlorophyll concentration from 1889 to present[J]. PLOS ONE, 2013, 8(6):1-20.
Google Scholar
|
[6] |
Arthur D B. A critical review of the development of the CIE1931 RGB color-matching functions[J]. Color Research and Application, 2004, 29(4),267-272.
Google Scholar
|
[7] |
中国计量科学研究院. GB/T3977—2008.颜色的表示方法[S]. 北京: 中国标准出版社, 2008.
Google Scholar
|
[8] |
National Institute of Metrology. GB/T3977—2008[S]. Beijing: China Standards Publishing House, 2008.
Google Scholar
|
[9] |
贾婉丽. Photoshop中的色彩空间转换[D]. 西安: 西安理工大学, 2002.
Google Scholar
|
[10] |
Jia W L. Color conversions in Photoshop[D]. Xi’an: Xi’an University of Technology, 2022.
Google Scholar
|
[11] |
唐军武, 陈清莲, 谭世祥, 等. 海洋光谱测量与数据分析处理方法[J]. 海洋通报, 1998, 17(1):71-79.
Google Scholar
|
[12] |
Tang J W, Chen Q L, Tang S X, et al. Method of oceanic spectral data measurement and analysis[J]. Marine Science Bulletin, 1998, 17(1):71-79.
Google Scholar
|
[13] |
唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004, 8(1):37-44.
Google Scholar
|
[14] |
Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ⅰ:Above-water method[J]. Journal of Remote Sensing, 2004, 8(1):37-44.
Google Scholar
|
[15] |
Woerd H J, Wernand M R. True colour classification of natural waters with medium-spectral resolution satellites:SeaWiFS,MODIS,MERIS and OLCI[J]. Sensors, 2015, 15(10):25663-25680.
Google Scholar
|
[16] |
Woerd H J, Wernand M R. Hue-angle product for low to medium spatial resolution optical satellite sensors[J]. Remote Sensing, 2018, 10(2):180-198.
Google Scholar
|
[17] |
Novoa S, Wernand M R, van der Woerd H J. The Forel-Ule scale revisited spectrally:Preparation protocol,transmission measurements and chromaticity[J]. Journal of the European Optical Society-Rapid publications, 2013(13057):1-8.
Google Scholar
|
[18] |
Pitarch J, Bellacicco M, Marullo S, et al. Global maps of Forel-Ule index,hue angle and Secchi disk depth derived from twenty-one years of monthly ESA-OC-CCI data[J]. Earth System Science Data Discussions, 2020(13):1-17.
Google Scholar
|
[19] |
Stomp M, Huisman J, Stal L J, et al. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule[J]. The ISME Journal, 2007, 1(4):271-282.
Google Scholar
|
[20] |
Holtrop T, Huisman J, Stomp M, et al. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans[J]. Nature Ecology and Evolution, 2021, 5(1):55-66.
Google Scholar
|
[21] |
Haverkamp T H A. Shades of red and green:The colorful diversity and ecology of picocyanobacteria in the Baltic Sea[D]. Amsterdam: Royal Netherlands Academy of Arts and Sciences, 2008.
Google Scholar
|
[22] |
Rueffler C, van Dooren T J M, Leimar O, et al. Disruptive selection and then what?[J]. Trends in Ecology and Evolution, 2006, 21(5):238-245.
Google Scholar
|
[23] |
Smith R C, Goldman T. Optical properties and color of Lake Tahoe and crater lake[J]. Limnology and Oceanography, 1973, 18(2):189-199.
Google Scholar
|
[24] |
Alfoldi T T, Munday J C. Water quality analysis by digital chromaticity mapping of Landsat data[J]. Canadian Journal of Remote Sensing, 1978, 4(2):108-126.
Google Scholar
|
[25] |
Jaquet J, Zand B. Colour analysis of inland waters using Landsat TM data[J]. European Space Agency Monographs, 1989, 1102(11):57-67
Google Scholar
|
[26] |
Sovdat B, Kadunc M, Batic M, et al. Natural color representation of Sentinel-2 data[J]. Remote Sensing of Environment, 2019(255):392-402.
Google Scholar
|
[27] |
Jolliff J K, Lewis M D, Ladner S, et al. Observing the ocean submesoscale with enhanced-color GOES-ABI visible band data[J]. Sensors, 2019, 19(3900):1-23.
Google Scholar
|
[28] |
Novoa S, Wernand M, van der Woerd H J. WACODI:A generic algorithm to derive the intrinsic color of natural waters from digital images[J]. Limnology and Oceanography:Methods, 2015, 13(12):697-711.
Google Scholar
|
[29] |
Novoa S, Wernand M R, van der Woerd H J. The modern Forel-Ule scale:A “Do-it-yourself” colour comparator for water monitoring[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9(14025):1-10.
Google Scholar
|
[30] |
Busch J A, Price I, Jeansou E, et al. Citizens and satellites:Assessment of phytoplankton dynamics in a NW Mediterranean aquaculture zone[J]. International Journal of Applied Earth Observation and Geoinformation, 2016(47):40-49.
Google Scholar
|
[31] |
Busch J A, Bardaji R, Ceccaroni L, et al. Citizen bio-optical observations from coast-and ocean and their compatibility with ocean colour satellite measurements[J]. Remote Sensing, 2016, 8(11):879.
Google Scholar
|
[32] |
Malthus T J, Ohmsen R, Woerd H J. An evaluation of citizen science smartphone APPs for inland water quality assessment[J]. Remote Sensing, 2020, 12(1578):1-20.
Google Scholar
|
[33] |
段洪涛, 罗菊花, 曹志刚, 等. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8):1182-1195.
Google Scholar
|
[34] |
Duan H T, Luo J H, Cao Z G, et al. Progress in remote sensing of aquatic environments at the watershed scale[J]. Progress in Geography, 2019, 38(8):1182-1195.
Google Scholar
|
[35] |
段洪涛, 曹志刚, 沈明, 等. 湖泊遥感研究进展与展望[J]. 遥感学报, 26(1):3-18.
Google Scholar
|
[36] |
Duan H T, Cao Z G, Shen M, et al. Review of lake remote sensing research[J]. National Remote Sensing Bulletin, 2019, 26(1):3-18.
Google Scholar
|
[37] |
Garaba S P, Friedrichs A, Vo? D, et al. Classifying natural waters with the Forel-Ule colour index system:Results,applications,correlations and crowdsourcing[J]. International Journal of Environmental Research and Public Health, 2015, 12(12):16096-16109.
Google Scholar
|
[38] |
Garaba S P, Vo? D, Zielinski O. Physical,bio-optical state and correlations in North-Western European Shelf Seas[J]. Remote Sensing, 2014, 6(6):5042-5066.
Google Scholar
|
[39] |
Woerd H J, Wernand M R, Peters M et al. True color analysis of natural waters with SeaWiFS,MODIS,MERIS and OLCI by SNAP[C]// Ocean Optics Conference, 2016.
Google Scholar
|
[40] |
Pitarch J, van der Woerd H J, Brewin R J W, et al. Optical properties of Forel-Ule water types deduced from 15 years of global satellite ocean color observations[J]. Remote Sensing of Environment, 2019(231):1-16.
Google Scholar
|
[41] |
Petus C, Waterhouse J, Lewis S, et al. A flood of information:Using Sentinel-3 water colour products to assure continuity in the monitoring of water quality trends in the Great Barrier Reef (Australia)[J]. Journal of Environmental Management, 2019(248):1-20.
Google Scholar
|
[42] |
Nie Y, Guo J, Sun B, et al. An evaluation of apparent color of seawater based on the in-situ and satellite-derived Forel-Ule color scale[J]. Estuarine,Coastal and Shelf Science, 2020(246):1-10.
Google Scholar
|
[43] |
Sung T, Kim Y J, Choi H, et al. Spatial downscaling of ocean colour-climate change initiative (OC-CCI) Forel-Ule index using GOCI satellite image and machine learning technique[J]. Korean Journal of Remote Sensing, 2021, 37(5-1):959-974.
Google Scholar
|
[44] |
Zhan J, Zhang D J, Zhou G Q, et al. MODIS-based research on Secchi disk depth using an improved Semianalytical algorithm in the Yellow Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021(14):5964-5972.
Google Scholar
|
[45] |
Li M J, Sun Y H, Li X J et al. An improved eutrophication assessment algorithm of estuaries and coastal waters in Liaodong Bay[J]. Remote Sensing, 2021, 13(19):3866-3884.
Google Scholar
|
[46] |
Wang S, Li J, Shen Q, et al. MODIS-based radiometric color extraction and classification of inland water with the Forel-Ule scale:A case study of Lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(2):907-918.
Google Scholar
|
[47] |
Li J, Wang S, Wu Y, et al. MODIS observations of water color of the largest 10 lakes in China between 2000 and 2012[J]. International Journal of Digital Earth, 2016, 9(8):788-805.
Google Scholar
|
[48] |
Wang S, Li J, Zhang B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sensing of Environment, 2018(217):444-460.
Google Scholar
|
[49] |
王胜蕾. 基于水色指数的大范围长时序湖库水质遥感监测研究[D]. 北京: 中国科学院大学, 2018.
Google Scholar
|
[50] |
Wang S L. Large-scale and long-time water quality remote sensing monitoring over lakes based on water color index[D]. Beijing: University of Chinese Academy of Sciences, 2018.
Google Scholar
|
[51] |
Lehmann M K, Nguyen U, Allan M, et al. Colour classification of 1 486 lakes across a wide range of optical water types[J]. Remote Sensing, 2018, 10(8):1273.
Google Scholar
|
[52] |
Jafar S M, Bowers D G, Griffiths J W. Remote sensing observations of ocean colour using the traditional Forel-Ule scale[J]. Estuarine,Coastal and Shelf Science, 2018(215):52-58.
Google Scholar
|
[53] |
Wang S, Li J, Zhang B, et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS[J]. Remote Sensing of Environment, 2020(247):1-17.
Google Scholar
|
[54] |
Chen Q, Huang M, Tang X. Eutrophication assessment of seasonal urban lakes in China Yangtze River basin using Landsat8-derived Forel-Ule index:A six-year (2013—2018) observation[J]. Science of the Total Environment, 2020(745):135392-135392.
Google Scholar
|
[55] |
许杨. 基于Landsat的长江中下游流域湖泊水体颜色长时序变化研究[D]. 武汉: 武汉大学, 2020.
Google Scholar
|
[56] |
Xu Y. Study on the long-term change of lacustrine water color in the middle and lower basins of the Yangtze river based on Landsat datasets[D]. Wuhan: Wuhan University, 2020.
Google Scholar
|
[57] |
许杨, 王野, 陆建忠, 等. 基于FUI模型的柬埔寨洞里萨湖水体颜色研究[J]. 华中师范大学学报(自然科学版), 2020, 54(3):454-462.
Google Scholar
|
[58] |
Xu Y, Wang Y, Lu J Z, et al. Study on water color of Tonle Sap Lake in Cambodia based on FUI model[J]. Journal of Central China Normal University(Natural Science), 2020, 54(3):454-462.
Google Scholar
|
[59] |
王野. 基于多源遥感数据的洞里萨湖水环境长时序动态过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Google Scholar
|
[60] |
Wang Y. Research on long-time dynamic process of Tonle Sap Lake water environment based on multi-source remote sensing data[D]. Harbin: Harbin Institute of Technology, 2020.
Google Scholar
|
[61] |
曹畅, 王胜蕾, 李俊生, 等. 基于MODIS数据的全国144个重点湖库营养状态监测:以2018年夏季为例[J]. 湖泊科学, 2018, 33(2):405-413.
Google Scholar
|
[62] |
Cao C, Wang S L, Li J S, et al. MODIS-based monitoring of spatial distribution of trophic status in 144 key lakes and reservoirs of China in summer of 2018[J]. Journal of Lake Sciences, 2018, 33(2):405-413.
Google Scholar
|
[63] |
姜倩. 卫星遥感在湖库水质监测中的有效性评价方法研究——以GF-1号卫星为例[D]. 兰州: 兰州交通大学, 2020.
Google Scholar
|
[64] |
Jiang Q. Study on the effectiveness evaluation method of satellite remote sensing in the monitoring of lake and reservoir water quality:Take GF-1 satellite as an example[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
Google Scholar
|
[65] |
温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别:以南京为例[J]. 环境科学, 2018, 39(1):57-67.
Google Scholar
|
[66] |
Wen S, Wang J, Li Y M, et al. Remote sensing identification of urban black-odor water bodies based on high-resolution images:A case study in Nanjing[J]. Environmental Science, 2018, 39(1):57-67.
Google Scholar
|
[67] |
杨子谦, 刘怀庆, 吕恒, 等. 基于高分影像的城市水体遥感综合分级方法[J]. 环境科学, 2021, 42(5):2213-2222.
Google Scholar
|
[68] |
Yang Z Q, Liu H Q, Lyu H, et al. A comprehensive classification method of urban water by remote sensing based on high-resolution images[J]. Environmental Science, 2021, 42(5):2213-2222.
Google Scholar
|
[69] |
Zhao Y, Shen Q, Wang Q, et al. Recognition of water colour anomaly by using hue angle and Sentinel 2 image[J]. Remote Sensing, 2020, 12(4):716-737.
Google Scholar
|
[70] |
Sathyendranath S, Brewin B, Mueller D, et al. Ocean colour climate change initiative:Approach and initial results[C]// 2012 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2012:2024-2027.
Google Scholar
|
[71] |
Jackson T, Chuprin A, Sathyendranath S, et al. Ocean colour climate change initiative (OC_CCI)-interim phase[R]. Plymouth: Plymouth Marine Laboratory, 2020.
Google Scholar
|
[72] |
张兵, 李俊生, 申茜, 等. 长时序大范围内陆水体光学遥感研究进展[J]. 遥感学报, 2021, 25(1):37-52.
Google Scholar
|
[73] |
Zhang B, Li J S, Shen Q, et al. Recent research progress on long time series and large scale optical remote sensing of inland water[J]. National Remote Sensing Bulletin, 2021, 25(1):37-52.
Google Scholar
|
[74] |
Wang S, Li J, Zhang W, et al. A dataset of remote-sensed Forel-Ule index for global inland waters during 2000—2018[J]. Scientific Data, 2021, 8(1):1-10.
Google Scholar
|
[75] |
Boyce D G, Lewis M, Worm B. Integrating global chlorophyll data from 1890 to 2010[J]. Limnology and Oceanography:Methods, 2012(10):840-852.
Google Scholar
|
[76] |
Dutkiewicz S, Hickman A E, Jahn O, et al. Ocean colour signature of climate change[J]. Nature Communications, 2019, 10(1):1-13.
Google Scholar
|
[77] |
邢小罡, 赵冬至, 刘玉光, 等. 叶绿素a荧光遥感研究进展[J]. 遥感学报, 2007, 11(1):137-144.
Google Scholar
|
[78] |
Xing X G, Zhao D Z, Liu Y G, et al. Process in fluorescence remote sensing of chlorophy-a[J]. Journal of Remote Sensing, 2007, 11(1):137-144.
Google Scholar
|
[79] |
Lee Z P. Remote sensing of inherent optical properties:Fundamentals,tests of algorithms,and applications[R]. Dartmouth: International Ocean-Colour Coordinating Group, 2006.
Google Scholar
|
[80] |
Friedrichs A, Busch J A, van der Woerd H J, et al. SmartFluo:A method and affordable adapter to measure chlorophyll a fluorescence with smartphones[J]. Sensors, 2017, 17(4):678.
Google Scholar
|
[81] |
Pozdnyakov D V, Kondratyev K Y. Numerical modelling of natural water colour:Implications for remote sensing and limnological studies[J]. International Journal of Remote Sensing, 1998, 19(10):1913-1932.
Google Scholar
|
[82] |
Wo?niak S B, Meler J. Modelling water colour characteristics in an optically complex nearshore environment in the Baltic Sea:Quantitative interpretation of the Forel-Ule scale and algorithms for the remote estimation of seawater composition[J]. Remote Sensing, 2020,(12):2851-2885.
Google Scholar
|
[83] |
Bukata R P, Jerome J H, Kondratyev K Y, et al. IEEE Conference on Computer Vision and Pattern Recognition.[J]. Journal of Great Lakes Research, 1997, 23(3):254-269.
Google Scholar
|
[84] |
Leech D M, Pollard A I, Labou S G, et al. Fewer blue lakes and more murky lakes across the continental US:Implications for planktonic food webs[J]. Limnology and Oceanography, 2018, 63(6):2661-2680.
Google Scholar
|
[85] |
Ting C S, Rocap G, King J, et al. Cyanobacterial photosynthesis in the oceans:The origins and significance of divergent light-harvesting strategies[J]. Trends in Microbiology, 2002, 10(3):134-142.
Google Scholar
|
[86] |
Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014, 10(7):492-501.
Google Scholar
|
[87] |
Monteith D T, Stoddard J L, Evans C D, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry[J]. Nature, 2007, 450(7169):537-540.
Google Scholar
|
[88] |
Weyhenmeyer G A, Müller R A, Norman M, et al. Sensitivity of freshwaters to browning in response to future climate change[J]. Climatic Change, 2016, 134(1-2):225-239.
Google Scholar
|
[89] |
Kritzberg E S. Centennial-long trends of lake browning show major effect of afforestation[J]. Limnology and Oceanography Letters, 2017, 2(4):105-112.
Google Scholar
|
[90] |
Urrutia C P, Ekvall M K, Ratcovich J, et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms[J]. Freshwater Biology, 2017, 62(11):1869-1878.
Google Scholar
|
[91] |
Wilken S, Soares M, Pablo U C, et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning[J]. Limnology and Ceanography, 2018(63):S142-S155.
Google Scholar
|
[92] |
FeuchtmayrH, Pottinger T G, Moore A, et al. Effects of brownification and warming on algal blooms,metabolism and higher trophic levels in productive shallow lake mesocosms[J]. Science of the Total Environment, 2019, 678:227-238.
Google Scholar
|
[93] |
Deininger A, Faithfull C L, Bergstr?m A K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon[J]. Ecology, 2017, 98(4):982-994.
Google Scholar
|
[94] |
Tan X, Zhang D, Duan Z, et al. Effects of light color on interspecific competition between microcystis aeruginosa and chlorella pyrenoidosa in batch experiment[J]. Environmental Science and Pollution Research, 2020, 27(1):344-352.
Google Scholar
|
[95] |
Luimstra V M, Verspagen J M H, Xu T, et al. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies[J]. Ecology, 2020, 101(3):1-17.
Google Scholar
|
[96] |
李云梅, 赵焕, 毕顺, 等. 基于水体光学分类的二类水体水环境参数遥感监测进展[J]. 遥感学报, 2022, 26(1):19-31.
Google Scholar
|
[97] |
Li Y M, Zhao H, Bi S, et al. Research progress of remote sensing monitoring of case II water environmental parameters based on water optical classification[J]. National Remote Sensing Bulletin, 2022, 26(1): 19-31.
Google Scholar
|