| [1] |
肖亮, 刘鹏飞, 李恒. 多源空—谱遥感图像融合方法进展与挑战[J]. 中国图象图形学, 2020, 25(5):851-863.
Google Scholar
|
| [2] |
Xiao L, Liu P F, Li H. Progress and challenges in the fusion of multisource spatial-spectral remote sensing images[J]. Journal of Image and Graphics, 2020, 25(5):851-863.
Google Scholar
|
| [3] |
Ghassemian H. A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32:75-89.
Google Scholar
|
| [4] |
张丽霞, 曾广平, 宣兆成. 多源图像融合方法的研究综述[J]. 计算机工程与科学, 2021:1-14.
Google Scholar
|
| [5] |
Zhang L X, Zeng G P, Xuan Z C. A survey of fusion methods for multi-source image[J]. Computer Engineering and Science, 2021:1-14.
Google Scholar
|
| [6] |
杨丽萍, 马孟, 谢巍, 等. 干旱区Landsat8全色与多光谱数据融合算法评价[J]. 国土资源遥感, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
Google Scholar
|
| [7] |
Yang L P, Ma M, Xie W, et al. Fusion algorithm evaluation of Landsat8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land and Resources, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
Google Scholar
|
| [8] |
Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications:A meta-review[J]. Remote Sensing of Environment, 2020, 236:111402-111420.
Google Scholar
|
| [9] |
刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.
Google Scholar
|
| [10] |
Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.
Google Scholar
|
| [11] |
王琳, 李迅, 包云轩, 等. 遥感技术在交通气象灾害监测中的应用进展[J]. 国土资源遥感, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.
Google Scholar
|
| [12] |
Wang L, Li X, Bao Y X, et al. Research progress of remote sensing application on transportation meteorological disasters[J]. Remote Sensing and for Land and Resources, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.
Google Scholar
|
| [13] |
王洪斌, 肖嵩, 曲家慧, 等. 基于多分支CNN高光谱与全色影像融合处理[J]. 光学学报, 2021, 41(7):55-63.
Google Scholar
|
| [14] |
Wang H B, Xiao S, Qu J H, et al. Pansharpening based on multi-branch CNN[J]. Acta Optica Sinica, 2021, 41(7):55-63.
Google Scholar
|
| [15] |
张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061.
Google Scholar
|
| [16] |
Zhang L P, Shen H F. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5):1050-1061.
Google Scholar
|
| [17] |
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166.
Google Scholar
|
| [18] |
Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):148-166.
Google Scholar
|
| [19] |
张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992—2018)[J]. 遥感学报, 2019, 23(4):603-619.
Google Scholar
|
| [20] |
Zhang L F, Peng M Y, Sun X J, et al. Progress and bibliometric analysis of remote sensing data fusion methods (1992—2018)[J]. Journal of Remote Sensing, 2019, 23(4):603-619.
Google Scholar
|
| [21] |
Meng X, Shen H, Li H, et al. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis:Practical discussion and challenges[J]. Information Fusion, 2019, 46:102-113.
Google Scholar
|
| [22] |
Javan F D, Samadzadegan F, Mehravar S, et al. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:101-117.
Google Scholar
|
| [23] |
Vivone G, Mura M D, Garzelli A, et al. A new benchmark based on recent advances in multispectral pansharpening:Revisiting pansharpening with classical and emerging pansharpening methods[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 9(1):53-81.
Google Scholar
|
| [24] |
Huang W, Xiao L, Wei Z, et al. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1037-1041.
Google Scholar
|
| [25] |
Masi G, Cozzolino D, Verdoliva L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7):594-615.
Google Scholar
|
| [26] |
Shahdoosti H R, Ghassemian H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter[J]. Information Fusion, 2016, 27:150-160.
Google Scholar
|
| [27] |
Laben C A, Brower B V. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:U.S.,US09/069232[P]. 2000-01-04.
Google Scholar
|
| [28] |
Ghahremani M, Ghassemian H. Nonlinear IHS:A promising method for pan-sharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1606-1610.
Google Scholar
|
| [29] |
Garzelli A, Nencini F, Capobianco L. Optimal MMSE pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 46(1):228-236.
Google Scholar
|
| [30] |
Aiazzi B, Alparone L, Baronti S, et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596.
Google Scholar
|
| [31] |
Vivone G, Restaino R, Chanussot J. Full scale regression-based injection coefficients for panchromatic sharpening[J]. IEEE Transactions on Image Processing, 2018, 27(7):3418-3431.
Google Scholar
|
| [32] |
Khan M M, Chanussot J, Condat L, et al. Indusion:Fusion of multispectral and panchromatic images using the induction scaling technique[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1):98-102.
Google Scholar
|
| [33] |
Dong L, Yang Q, Wu H, et al. High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform[J]. Neurocomputing, 2015, 159:268-274.
Google Scholar
|
| [34] |
El-Mezouar M C, Kpalma K, Taleb N, et al. A pan-sharpening based on the non-subsampled contourlet transform:Application to WorldView-2 imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1806-1815.
Google Scholar
|
| [35] |
曹义亲, 杨世超, 谢舒慧. 基于NSST的PCNN-SR卫星遥感图像融合方法[J]. 航天控制, 2020, 38(2):44-50.
Google Scholar
|
| [36] |
Cao Y Q, Yang S C, Xie S H. Satellite remote sensing image fusion method based on NSST and PCNN-SR[J]. Aerospce Control, 2020, 38(2):44-50.
Google Scholar
|
| [37] |
吴一全, 王志来. 混沌蜂群优化的NSST域多光谱与全色图像融合[J]. 遥感学报, 2017, 21(4):549-557.
Google Scholar
|
| [38] |
Wu Y Q, Wang Z L. Multispectral and panchromatic image fusion using chaotic Bee Colony optimization in NSST domain[J]. Journal of Remote Sensing, 2017, 21(4):549-557.
Google Scholar
|
| [39] |
Li S, Yang B. A new pan-sharpening method using a compressed sensing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(2):738-746.
Google Scholar
|
| [40] |
Yin H. PAN-guided cross-resolution projection for local adaptive sparse representation-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4938-4950.
Google Scholar
|
| [41] |
李成轶, 田淑芳. 基于字典学习的遥感影像超分辨率融合方法[J]. 国土资源遥感, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.
Google Scholar
|
| [42] |
Li C Y, Tian S F. Super-resolution fusion method for remote sensing image based on dictionary learning[J]. Remote Sensing and for Land and Resources, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.
Google Scholar
|
| [43] |
Yin H. Sparse representation based pansharpening with details injection model[J]. Signal Processing, 2015, 113:218-227.
Google Scholar
|
| [44] |
Li S, Yin H, Fang L. Remote sensing image fusion via sparse representations over learned dictionaries[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4779-4789.
Google Scholar
|
| [45] |
Scarpa G, Vitale S, Cozzolino D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9),5443-5457.
Google Scholar
|
| [46] |
Wei Y, Yuan Q, Shen H, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10),1795-1799.
Google Scholar
|
| [47] |
Yang J, Fu X, Hu Y, et al. PanNet:A deep network architecture for pan-sharpening[C]// Proceedings of the IEEE International Conference on Computer Vision.IEEE,Venice,Italy, 2017:5449-5457.
Google Scholar
|
| [48] |
Zhang H, Ma J. GTP-PNet:A residual learning network based on gradient transformation prior for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172:223-239.
Google Scholar
|
| [49] |
Yang Y, Tu W, Huang S, et al. PCDRN:Progressive cascade deep residual network for pansharpening[J]. Remote Sensing, 2020, 12(4):676.
Google Scholar
|
| [50] |
Huang W, Feng J, Wang H, et al. A new architecture of densely connected convolutional networks for pan-sharpening[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):242.
Google Scholar
|
| [51] |
Peng J, Liu L, Wang J, et al. PSMD-Net:A novel pan-sharpening method based on a multiscale dense network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6):4957-4971.
Google Scholar
|
| [52] |
Luo S, Zhou S, Qi Y. CSAFNET:Channel similarity attention fusion network for multispectral pansharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2020.
Google Scholar
|
| [53] |
孔爱玲, 张承明, 李峰, 等. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.
Google Scholar
|
| [54] |
Kong A L, Zhang C M, Li F, et al. Knowledge-based remote sensing imagery fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.
Google Scholar
|
| [55] |
Jiang M, Shen H, Li J, et al. A differential information residual convolutional neural network for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:257-271.
Google Scholar
|
| [56] |
Lei D, Chen H, Zhang L, et al. NLRNet:An efficient nonlocal attention resnet for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5401113.
Google Scholar
|
| [57] |
Shao Z, Cai J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5),1656-1669.
Google Scholar
|
| [58] |
Liu X, Liu Q, Wang Y. Remote sensing image fusion based on two-stream fusion network[J]. Information Fusion, 2020,55,1-15.
Google Scholar
|
| [59] |
Fu S, Meng W, Jeon G, et al. Two-path network with feedback connections for pan-sharpening in remote sensing[J]. Remote Sensing, 2020, 12(10),1674.
Google Scholar
|
| [60] |
He L, Xi D, Li J, et al. A spectral-aware convolutional neural network for pansharpening[J]. Applied Sciences, 2020, 10(17),5809.
Google Scholar
|
| [61] |
Zhang Y, Liu C, Sun M, et al. Pan-sharpening using an efficient bidirectional pyramid network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8),5549-5563.
Google Scholar
|
| [62] |
Fang S, Wang X, Zhang J, et al. Pan-sharpening based on parallel pyramid convolutional neural network[C]// IEEE International Conference on Image Processing (ICIP), 2020:453-457.
Google Scholar
|
| [63] |
方帅, 方赛华, 姚宏亮. 基于深度金字塔网络的Pan-Sharpening算法[J]. 计算机辅助设计与图形学学报, 2019, 31(10):1831-1837.
Google Scholar
|
| [64] |
Fang S, Fang S H, Yao H L. Pan-sharpening based on a deep pyramid network[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(10):1831-1837.
Google Scholar
|
| [65] |
Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
Google Scholar
|
| [66] |
Yao W, Zeng Z, Lian C, et al. Pixel-wise regression using U-Net and its application on pansharpening[J]. Neurocomputing, 2018, 312:364-371.
Google Scholar
|
| [67] |
Wang W, Zhou Z, Liu H, et al. MSDRN:Pansharpening of multispectral images via multi-scale deep residual network[J]. Remote Sensing, 2021, 13(6):1200.
Google Scholar
|
| [68] |
Lai Z, Chen L, Jeon G, et al. Real-time and effective pan-sharpening for remote sensing using multi-scale fusion network[J]. Journal of Real-Time Image Processing, 2021:1-17.
Google Scholar
|
| [69] |
Benzenati T, Kallel A, Kessentini Y. Two stages pan-sharpening details injection approach based on very deep residual networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6),4984-4992.
Google Scholar
|
| [70] |
He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
Google Scholar
|
| [71] |
Hu J, Du C, Fan S. Two-stage pansharpening based on multi-level detail injection network[J]. IEEE Access, 2020, 8:156442-156455.
Google Scholar
|
| [72] |
Zhang L, Zhang J, Ma J, et al. SC-PNN:Saliency cascade convolutional neural network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021:1-19.
Google Scholar
|
| [73] |
Li W, Liang X, Dong M. MDECNN:A multiscale perception dense encoding convolutional neural network for multispectral pan-sharpening[J]. Remote Sensing, 2021, 13(3):535.
Google Scholar
|
| [74] |
Yuan Q, Wei Y, Meng X, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):978-989.
Google Scholar
|
| [75] |
Hu J, Hu P, Kang X, et al. Pan-sharpening via multiscale dynamic convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3):2231-2244.
Google Scholar
|
| [76] |
Guo Y, Ye F, Gong H. Learning an efficient convolution neural network for pansharpening[J]. Algorithms, 2019, 12(1):16.
Google Scholar
|
| [77] |
Hu J, Hu P, Wang Z P, et al. Spatial dynamic selection network for remote-sensing image fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:8013205.
Google Scholar
|
| [78] |
Hu J, He Z, Wu J. Deep self-learning network for adaptive pansharpening[J]. Remote Sensing, 2019, 11(20):2395.
Google Scholar
|
| [79] |
Liu J, Feng Y, Zhou C, et al. PWnet:An adaptive weigh network for the fusion of panchromatic and multispectral images[J]. Remote Sensing, 2020, 12(17):2804.
Google Scholar
|
| [80] |
Deng L J, Vivone G, Jin C, et al. Detail injection-based deep convolutional neural networks for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020:1-16.
Google Scholar
|
| [81] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11):139-144.
Google Scholar
|
| [82] |
Ma J, Yu W, Chen C, et al. Pan-GAN:An unsupervised pan-sharpening method for remote sensing image fusion[J]. Information Fusion, 2020, 62:110-120.
Google Scholar
|
| [83] |
Zhou C, Zhang J, Liu J, et al. PercepPan:Towards unsupervised pan-sharpening based on perceptual loss[J]. Remote Sensing, 2020, 12(14):2318.
Google Scholar
|
| [84] |
Xiong Z, Guo Q, Liu M, et al. Pan-sharpening based on convolutional neural network by using the loss function with no-reference[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:897-906.
Google Scholar
|
| [85] |
Luo S, Zhou S, Feng Y, et al. Pansharpening via unsupervised convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4295-4310.
Google Scholar
|
| [86] |
杜晨光, 胡建文, 胡佩. 半监督卷积神经网络遥感图像融合[J], 电子测量与仪器学报, 2021, 35(6):63-70.
Google Scholar
|
| [87] |
Du C G, Hu J W, Hu P. Semi-supervised convolutional neural network remote sensing image fusion[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(6):63-70.
Google Scholar
|
| [88] |
Vitale S, Scarpa G. A detail-preserving cross-scale learning strategy for CNN-based pansharpening[J]. Remote Sensing, 2020, 12(3):348.
Google Scholar
|
| [89] |
黄珊珊, 江倩, 金鑫, 等. 结合双胞胎结构与生成对抗网络的半监督遥感图像融合[J]. 计算机辅助设计与图形学学报, 2021, 33(1):92-105.
Google Scholar
|
| [90] |
Huang S S, Jiang Q, Jin X, et al. Semi-supervised remote sensing image fusion method combining siamese structure with generative adversarial networks[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(1):92-105.
Google Scholar
|
| [91] |
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks[C]// International Conference on Machine Learning.PMLR, 2017:214-223.
Google Scholar
|
| [92] |
Mirza M, Osindero S. Conditional generative adversarial nets[J]. Computer Science, 2014:2672-2680.
Google Scholar
|
| [93] |
Liu X, Deng C, Zhao B, et al. Feature-level loss for multispectral pan-sharpening with machine learning[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS).IEEE, 2018:8062-8065.
Google Scholar
|
| [94] |
Xu H, Ma J, Shao Z, et al. SDPNet:A deep network for pan-sharpening with enhanced information representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5):4120-4134.
Google Scholar
|
| [95] |
Choi J S, Kim Y, Kim M. S3:A spectral-spatial structure loss for pan-sharpening networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5):829-833.
Google Scholar
|
| [96] |
Eghbalian S, Ghassemian H. Multi spectral image fusion by deep convolutional neural network and new spectral loss function[J]. International Journal of Remote Sensing, 2018, 39(12):3983-4002.
Google Scholar
|
| [97] |
Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[C]// European Conference on Computer Vision.Springer,Cham, 2016:694-711.
Google Scholar
|
| [98] |
Bello J L G, Seo S, Kim M. Pan-sharpening with color-aware perceptual loss and guided re-colorization[C]// IEEE International Conference on Image Processing (ICIP).IEEE, 2020:908-912.
Google Scholar
|
| [99] |
Vivone G, Alparone L, Chanussot J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5):2565-2586.
Google Scholar
|
| [100] |
Alparone L, Aiazzi B, Baronti S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(2):193-200.
Google Scholar
|