[1] |
方涛, 霍宏, 马贺平. 高分辨率遥感影像智能解译[M]. 北京: 科学出版社, 2016:18-25.
Google Scholar
|
[2] |
Fang T, Huo H, Ma H P. Intelligent interpretation of high resolution remote sensing image[M]. Beijing: Science Press, 2016:18-25.
Google Scholar
|
[3] |
Deng F L. Research on multi-level segmentation method and application of high resolution remote sensing image[D]. Beijing: University of Chinese Academy of Sciences, 2013.
Google Scholar
|
[4] |
Work E A, Gilmer D S. Utilization of satellite data for inventorying prairie ponds and lakes[J]. Photogrammetric Engineering and Remote Sensing, 1976, 42(5):685-694.
Google Scholar
|
[5] |
Frazier P S, Page K J. Water body detection and delineation with Landsat TM data[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(12):1461-1468.
Google Scholar
|
[6] |
McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
Google Scholar
|
[7] |
Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):261-270.
Google Scholar
|
[8] |
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
Google Scholar
|
[9] |
Lecun Y L, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
Google Scholar
|
[10] |
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.
Google Scholar
|
[11] |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017:2961-2969.
Google Scholar
|
[12] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:3431-3440.
Google Scholar
|
[13] |
许玥. 基于改进Unet的遥感影像语义分割在地表水体变迁中的应用[D]. 重庆: 重庆师范大学, 2019.
Google Scholar
|
[14] |
Xu Y. Application of semantic segmentation of remote sensing image based on improved Unet in surface water changes[D]. Chongqing: Chongqing Normal University, 2019.
Google Scholar
|
[15] |
Ying X, Wang Q, Li X, et al. Multi-attention object detection model in remote sensing images based on multi-scale[J]. IEEE Access, 2019, 7:94508-94519.
Google Scholar
|
[16] |
He N, Fang L, Plaza A. Hybrid first and second order attention U-net for building segmentation in remote sensing images[J]. Science China Information Sciences, 2020, 63(4):1-12.
Google Scholar
|
[17] |
Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
Google Scholar
|
[18] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
Google Scholar
|
[19] |
Zhang X, Xiao P, Feng X, et al. Toward evaluating multiscale segmentations of high spatial resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3694-3706.
Google Scholar
|
[20] |
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848.
Google Scholar
|
[21] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2881-2890.
Google Scholar
|
[22] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
Google Scholar
|