[1] |
朱庭芸. 灌区土壤盐渍化防治[M]. 北京: 农业出版社, 1992:32-37.
Google Scholar
|
[2] |
Zhu T Y. Soils-salinity control in irrigation area[M]. Beijing: Agricultural Press, 1992:32-37.
Google Scholar
|
[3] |
Kovda A. Loss of productive land due to salinization[J]. Ambio, 1983, 12(2):1-4.
Google Scholar
|
[4] |
杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008(5):837-845.
Google Scholar
|
[5] |
Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008(5):837-845.
Google Scholar
|
[6] |
Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:A review[J]. Advances in Remote Sensing, 2013, 2(4):373-385.
Google Scholar
|
[7] |
Metternicht G I, Zinck J A. Remote sensing of soil salinity:Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1):1-20.
Google Scholar
|
[8] |
赵剑桥. 土壤盐渍化的遥感监测方法及应用[J]. 农村经济与科技, 2018, 29(7):41-42.
Google Scholar
|
[9] |
Zhao J Q. Remote sensing monitoring method of soil salinization and its application[J]. Rural Economy and Science-Technology, 2018, 29(7):41-42.
Google Scholar
|
[10] |
Thiam S, Villamor G B, Faye L C, et al. Monitoring land use and soil salinity changes in coastal landscape:A case study from Senegal[J]. Environmental Monitoring and Assessment, 2021, 193(5): 259-260.
Google Scholar
|
[11] |
潘肖燕, 崔江慧, 杨江燕, 等. 基于SDI校正指数的滨海平原盐渍化生态风险评价[J]. 农业资源与环境学报, 2020, 37(5):709-718.
Google Scholar
|
[12] |
Pan X Y, Cui J H, Yang J Y, et al. Ecological risk assessment of salinization in coastal plain based on SDI correction index[J]. Journal of Agricultural Resources and Environment, 2020, 37(5):709-718.
Google Scholar
|
[13] |
樊彦国, 张维康, 刘敬一. 基于植被指数-盐分指数特征空间的黄河三角洲盐渍化遥感监测研究[J]. 山东农业科学, 2016, 48(5):137-141.
Google Scholar
|
[14] |
Fan Y G, Zhang W K, Liu J Y. Remote sensing monitoring model of soil salinization in the Yellow River delta zone based on vegetation index-salt index feature space[J]. Shandong Agricultural Sciences, 2016, 48(5):137-141.
Google Scholar
|
[15] |
哈学萍, 丁建丽, 塔西甫拉提·特依拜, 等. 基于SI-Albedo特征空间的土壤盐渍化遥感监测指数研究[J]. 土壤学报, 2009, 46(4):698-703.
Google Scholar
|
[16] |
Ha X P, Ding J L, Tashpolat T, et al. SI-Albedo space-based remote sensing synthesis index models for monitoring of soil salinization[J]. Acta Pedologica Sinica, 2009, 46(4):698-703.
Google Scholar
|
[17] |
王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8):168-173,8.
Google Scholar
|
[18] |
Wang F, Ding J L, Wu M C. Remote sensing monitoring models of soil salinization based in NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):168-173,8.
Google Scholar
|
[19] |
陈实, 徐斌, 金云翔, 等. 北疆农区土壤盐渍化遥感监测及其时空特征分析[J]. 地理科学, 2015, 35(12):1607-1615.
Google Scholar
|
[20] |
Chen S, Xu B, Jin Y X, et al. Remote sensing monitoring and spatial-temporal characteristics analysis of soil salinization in agricultural area of northern Xinjiang[J]. Scientia Geographica Sinica, 2015, 35(12):1607-1615.
Google Scholar
|
[21] |
张添佑, 王玲, 王辉, 等. 玛纳斯河流域盐渍化灌区生态环境遥感监测研究[J]. 生态学报, 2017, 37(9):3009-3018.
Google Scholar
|
[22] |
Zhang T Y, Wang L, Wang H, et al. Assessment of soil salinization ecological environment change in the Manas River basin using remote sensing technology[J]. Acta Ecologica Sinica, 2017, 37(9):3009-3018.
Google Scholar
|
[23] |
史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区水盐运动与盐渍化防治研究展望[J]. 灌溉排水学报, 2020, 39(8):1-17.
Google Scholar
|
[24] |
Shi H B, Yang S Q, Li R P, et al. Soil water and salt movement and soilsalinization control in Hetao irrigation district:Current state and future prospect[J]. Journal of Irrigation and Drainage, 2020, 39(8):1-17.
Google Scholar
|
[25] |
卢晶, 张绪教, 叶培盛, 等. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.
Google Scholar
|
[26] |
Lu J, Zhang X J, Ye P S, et al. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land and Resources, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.
Google Scholar
|
[27] |
孙国军, 孙涛. 乌拉特前旗现代绿洲农业发展对策研究[J]. 地域研究与开发, 2011, 30(6):136-139.
Google Scholar
|
[28] |
Sun G J, Sun T. Study on modern oasis agricultural influencing factors and its countermeasures in Wulate County[J]. Areal Research and Development, 2011, 30(6):136-139.
Google Scholar
|
[29] |
孙国军. 基于BP人工神经网络的内蒙古乌拉特前旗生态环境脆弱性评价[D]. 兰州: 西北师范大学, 2009.
Google Scholar
|
[30] |
Sun G J. Evaluation of eco-environment fragilily with BP artificial neural networks in Wulate Country,Inner Mongolia,China[D]. Lanzhou: Northwest Normal University, 2009.
Google Scholar
|
[31] |
王学全, 高前兆, 卢琦. 内蒙古河套灌区水资源高效利用与盐渍化调控[J]. 干旱区资源与环境, 2005(6):120-125.
Google Scholar
|
[32] |
Wang X Q, Gao Q Z, Lu Q. Effective use of water resources and salinity and waterlogging control in the Hetao irrigation area of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2005(6):120-125.
Google Scholar
|
[33] |
李超, 文天晟, 张凤荣, 等. 半干旱沙区土类/亚类的遥感调查制图方法[J]. 农业工程学报, 2018, 34(6):189-196.
Google Scholar
|
[34] |
Li C, Wen T S, Zhang F R, et al. Method for remote sensing survey and mapping of soil types and subtypes in semi-arid sand region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):189-196.
Google Scholar
|
[35] |
Weiss E, Marsh S E, Pfirman E S. Application of NOAA-AVHRR NDVI time-series data to assess changes in Saudi Arabia’s rangelands[J]. International Journal of Remote Sensing, 2001, 22(6): 1005-1028.
Google Scholar
|
[36] |
Tilley D R, Ahmed M, Son J H, et al. Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh[J]. Journal of Environmental Quality, 2007, 36(3): 780-789.
Google Scholar
|
[37] |
孙媛. 基于土壤和植被光谱信息的宁夏银北地区土壤盐碱化程度反演研究[D]. 银川: 宁夏大学, 2020.
Google Scholar
|
[38] |
Sun Y. Inversion of the degree of soil salinization based on spectra of soil and vegetation in northern Yinchuan Plain of Ningxia[D]. Yinchuan: Ningxia University, 2020.
Google Scholar
|
[39] |
陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-112.
Google Scholar
|
[40] |
Chen H Y, Zhao G X, Chen J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):107-112.
Google Scholar
|
[41] |
Allbed A, Kumar L, Aldakheel Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region[J]. Geoderma, 2014, 230:1-8.
Google Scholar
|
[42] |
Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77: 96-109.
Google Scholar
|
[43] |
Bannari A, Guedon A M, El-Harti A, et al. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor[J]. Communications in Soil Science and Plant Analysis, 2009, 39: 2795-2811.
Google Scholar
|
[44] |
王爽, 丁建丽, 王璐, 等. 基于地表光谱建模的区域土壤盐渍化遥感监测研究[J]. 干旱区地理, 2016, 39(1):190-198.
Google Scholar
|
[45] |
Wang S, Ding J L, Wang L, et al. Remote sensing monitoring of soil salinization based on surface spectral modeling[J]. Arid Land Geo-graphy, 2016, 39(1):190-198.
Google Scholar
|
[46] |
张俊华, 孙媛, 贾科利, 等. 不同盐结皮光谱特征及其盐渍化信息预测研究[J]. 农业机械学报, 2018, 49(12):325-333,370.
Google Scholar
|
[47] |
Zhang J H, Sun Y, Jia K L, et al. Spectral characteristics and salinization information prediction of different soil salt crusts[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12):325-333,370.
Google Scholar
|
[48] |
Al-Khakani E T, Yousif S R. An assessment of soil salinity and vegetation cover changes for a part of An-Najaf governorate using remote sensing data[J]. Journal of Physics: Conference Series, 2019, 1234: 012023.
Google Scholar
|
[49] |
Verstraete M M, Pinty B. Designing optimal spectral indexes for remote sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 4(5):1254-1265.
Google Scholar
|
[50] |
王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993:333-335.
Google Scholar
|
[51] |
Wang Z Q, Zhu S Q, Yu R P, et al. Salt-affected soils in China[M]. Beijing: Science Press, 1993:333-335.
Google Scholar
|
[52] |
李自珍, 李维德, 石洪华, 等. 生态风险灰色评价模型及其在绿洲盐渍化农田生态系统中的应用[J]. 中国沙漠, 2002(6):95-100.
Google Scholar
|
[53] |
Li Z Z, Li W D, Shi H H, et al. Gray model for ecological risk assessment and its application in salinization oasis agroecosystem[J]. Journal of Desert Research, 2002(6):95-100.
Google Scholar
|
[54] |
李仙岳, 崔佳琪, 史海滨, 等. 基于指示Kriging的土壤盐渍化风险与地下水环境分析[J]. 农业机械学报, 2021, 52(8):297-306.
Google Scholar
|
[55] |
Li X Y, Cui J Q, Shi H B, et al. Analysis of soil salinization risk and groundwater environment based on indicator Kriging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8):297-306.
Google Scholar
|
[56] |
李冬顺, 杨劲松, 姚荣江. 生态风险分析用于苏北滩涂土壤盐渍化风险评估研究[J]. 土壤学报, 2010, 47(5):857-864.
Google Scholar
|
[57] |
Li D S, Yang J S, Yao R J. Application of ecological risk analysis to soil salinization risk assessment of coastal tidal flat in north Jiangsu Province[J]. Acta Pedologica Sinica, 2010, 47(5):857-864.
Google Scholar
|