China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 34, No. 4
Article Contents

ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. 2022. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment. Remote Sensing for Natural Resources, 34(4): 136-143. doi: 10.6046/zrzyyg.2021349
Citation: ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. 2022. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment. Remote Sensing for Natural Resources, 34(4): 136-143. doi: 10.6046/zrzyyg.2021349

Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment

  • Soil salinization is the most severe environmental risk in arid and semi-arid areas. The remote sensing method that constructs a characteristic space based on characteristic parameters provides an effective and economical tool and technique for the timely monitoring and inversion of soil salinization. Presently, the normalized difference vegetation index (NDVI) and the salinity index (SI) are mainly selected as the characteristic parameters for salinization inversion, while refined analysis and regional applicability are lacking. This study investigated Urad Front Banner in Inner Mongolia based on the Landsat8 OLI data. The ENDVI-SI3 characteristic space was constructed using the enhanced normalized difference vegetation index (ENDVI) that introduced the shortwave infrared band and the salinity index 3 (SI3) with the best inversion effect for semi-arid areas. Accordingly, the improved salinization monitoring index (ISMI) model was built. The results show that the correlation coefficient between ISMI and soil salt content was up to 0.82, and the inversion precision of the ISMI model was higher than that of NDVI, EDNVI, and SI3 (-0.66, -0.70, and 0.75, respectively). Based on the ISMI, this study achieved the quantitative inversion analysis and risk assessment of soil salinization in Urad Front Banner. This study provides an approach for selecting the optimal characteristic parameters of the characteristic space in the salinization inversion of semi-arid areas.
  • 加载中
  • [1] 朱庭芸. 灌区土壤盐渍化防治[M]. 北京: 农业出版社, 1992:32-37.

    Google Scholar

    [2] Zhu T Y. Soils-salinity control in irrigation area[M]. Beijing: Agricultural Press, 1992:32-37.

    Google Scholar

    [3] Kovda A. Loss of productive land due to salinization[J]. Ambio, 1983, 12(2):1-4.

    Google Scholar

    [4] 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008(5):837-845.

    Google Scholar

    [5] Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008(5):837-845.

    Google Scholar

    [6] Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:A review[J]. Advances in Remote Sensing, 2013, 2(4):373-385.

    Google Scholar

    [7] Metternicht G I, Zinck J A. Remote sensing of soil salinity:Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1):1-20.

    Google Scholar

    [8] 赵剑桥. 土壤盐渍化的遥感监测方法及应用[J]. 农村经济与科技, 2018, 29(7):41-42.

    Google Scholar

    [9] Zhao J Q. Remote sensing monitoring method of soil salinization and its application[J]. Rural Economy and Science-Technology, 2018, 29(7):41-42.

    Google Scholar

    [10] Thiam S, Villamor G B, Faye L C, et al. Monitoring land use and soil salinity changes in coastal landscape:A case study from Senegal[J]. Environmental Monitoring and Assessment, 2021, 193(5): 259-260.

    Google Scholar

    [11] 潘肖燕, 崔江慧, 杨江燕, 等. 基于SDI校正指数的滨海平原盐渍化生态风险评价[J]. 农业资源与环境学报, 2020, 37(5):709-718.

    Google Scholar

    [12] Pan X Y, Cui J H, Yang J Y, et al. Ecological risk assessment of salinization in coastal plain based on SDI correction index[J]. Journal of Agricultural Resources and Environment, 2020, 37(5):709-718.

    Google Scholar

    [13] 樊彦国, 张维康, 刘敬一. 基于植被指数-盐分指数特征空间的黄河三角洲盐渍化遥感监测研究[J]. 山东农业科学, 2016, 48(5):137-141.

    Google Scholar

    [14] Fan Y G, Zhang W K, Liu J Y. Remote sensing monitoring model of soil salinization in the Yellow River delta zone based on vegetation index-salt index feature space[J]. Shandong Agricultural Sciences, 2016, 48(5):137-141.

    Google Scholar

    [15] 哈学萍, 丁建丽, 塔西甫拉提·特依拜, 等. 基于SI-Albedo特征空间的土壤盐渍化遥感监测指数研究[J]. 土壤学报, 2009, 46(4):698-703.

    Google Scholar

    [16] Ha X P, Ding J L, Tashpolat T, et al. SI-Albedo space-based remote sensing synthesis index models for monitoring of soil salinization[J]. Acta Pedologica Sinica, 2009, 46(4):698-703.

    Google Scholar

    [17] 王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8):168-173,8.

    Google Scholar

    [18] Wang F, Ding J L, Wu M C. Remote sensing monitoring models of soil salinization based in NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):168-173,8.

    Google Scholar

    [19] 陈实, 徐斌, 金云翔, 等. 北疆农区土壤盐渍化遥感监测及其时空特征分析[J]. 地理科学, 2015, 35(12):1607-1615.

    Google Scholar

    [20] Chen S, Xu B, Jin Y X, et al. Remote sensing monitoring and spatial-temporal characteristics analysis of soil salinization in agricultural area of northern Xinjiang[J]. Scientia Geographica Sinica, 2015, 35(12):1607-1615.

    Google Scholar

    [21] 张添佑, 王玲, 王辉, 等. 玛纳斯河流域盐渍化灌区生态环境遥感监测研究[J]. 生态学报, 2017, 37(9):3009-3018.

    Google Scholar

    [22] Zhang T Y, Wang L, Wang H, et al. Assessment of soil salinization ecological environment change in the Manas River basin using remote sensing technology[J]. Acta Ecologica Sinica, 2017, 37(9):3009-3018.

    Google Scholar

    [23] 史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区水盐运动与盐渍化防治研究展望[J]. 灌溉排水学报, 2020, 39(8):1-17.

    Google Scholar

    [24] Shi H B, Yang S Q, Li R P, et al. Soil water and salt movement and soilsalinization control in Hetao irrigation district:Current state and future prospect[J]. Journal of Irrigation and Drainage, 2020, 39(8):1-17.

    Google Scholar

    [25] 卢晶, 张绪教, 叶培盛, 等. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.

    Google Scholar

    [26] Lu J, Zhang X J, Ye P S, et al. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land and Resources, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.

    Google Scholar

    [27] 孙国军, 孙涛. 乌拉特前旗现代绿洲农业发展对策研究[J]. 地域研究与开发, 2011, 30(6):136-139.

    Google Scholar

    [28] Sun G J, Sun T. Study on modern oasis agricultural influencing factors and its countermeasures in Wulate County[J]. Areal Research and Development, 2011, 30(6):136-139.

    Google Scholar

    [29] 孙国军. 基于BP人工神经网络的内蒙古乌拉特前旗生态环境脆弱性评价[D]. 兰州: 西北师范大学, 2009.

    Google Scholar

    [30] Sun G J. Evaluation of eco-environment fragilily with BP artificial neural networks in Wulate Country,Inner Mongolia,China[D]. Lanzhou: Northwest Normal University, 2009.

    Google Scholar

    [31] 王学全, 高前兆, 卢琦. 内蒙古河套灌区水资源高效利用与盐渍化调控[J]. 干旱区资源与环境, 2005(6):120-125.

    Google Scholar

    [32] Wang X Q, Gao Q Z, Lu Q. Effective use of water resources and salinity and waterlogging control in the Hetao irrigation area of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2005(6):120-125.

    Google Scholar

    [33] 李超, 文天晟, 张凤荣, 等. 半干旱沙区土类/亚类的遥感调查制图方法[J]. 农业工程学报, 2018, 34(6):189-196.

    Google Scholar

    [34] Li C, Wen T S, Zhang F R, et al. Method for remote sensing survey and mapping of soil types and subtypes in semi-arid sand region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):189-196.

    Google Scholar

    [35] Weiss E, Marsh S E, Pfirman E S. Application of NOAA-AVHRR NDVI time-series data to assess changes in Saudi Arabia’s rangelands[J]. International Journal of Remote Sensing, 2001, 22(6): 1005-1028.

    Google Scholar

    [36] Tilley D R, Ahmed M, Son J H, et al. Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh[J]. Journal of Environmental Quality, 2007, 36(3): 780-789.

    Google Scholar

    [37] 孙媛. 基于土壤和植被光谱信息的宁夏银北地区土壤盐碱化程度反演研究[D]. 银川: 宁夏大学, 2020.

    Google Scholar

    [38] Sun Y. Inversion of the degree of soil salinization based on spectra of soil and vegetation in northern Yinchuan Plain of Ningxia[D]. Yinchuan: Ningxia University, 2020.

    Google Scholar

    [39] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-112.

    Google Scholar

    [40] Chen H Y, Zhao G X, Chen J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):107-112.

    Google Scholar

    [41] Allbed A, Kumar L, Aldakheel Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region[J]. Geoderma, 2014, 230:1-8.

    Google Scholar

    [42] Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77: 96-109.

    Google Scholar

    [43] Bannari A, Guedon A M, El-Harti A, et al. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor[J]. Communications in Soil Science and Plant Analysis, 2009, 39: 2795-2811.

    Google Scholar

    [44] 王爽, 丁建丽, 王璐, 等. 基于地表光谱建模的区域土壤盐渍化遥感监测研究[J]. 干旱区地理, 2016, 39(1):190-198.

    Google Scholar

    [45] Wang S, Ding J L, Wang L, et al. Remote sensing monitoring of soil salinization based on surface spectral modeling[J]. Arid Land Geo-graphy, 2016, 39(1):190-198.

    Google Scholar

    [46] 张俊华, 孙媛, 贾科利, 等. 不同盐结皮光谱特征及其盐渍化信息预测研究[J]. 农业机械学报, 2018, 49(12):325-333,370.

    Google Scholar

    [47] Zhang J H, Sun Y, Jia K L, et al. Spectral characteristics and salinization information prediction of different soil salt crusts[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12):325-333,370.

    Google Scholar

    [48] Al-Khakani E T, Yousif S R. An assessment of soil salinity and vegetation cover changes for a part of An-Najaf governorate using remote sensing data[J]. Journal of Physics: Conference Series, 2019, 1234: 012023.

    Google Scholar

    [49] Verstraete M M, Pinty B. Designing optimal spectral indexes for remote sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 4(5):1254-1265.

    Google Scholar

    [50] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993:333-335.

    Google Scholar

    [51] Wang Z Q, Zhu S Q, Yu R P, et al. Salt-affected soils in China[M]. Beijing: Science Press, 1993:333-335.

    Google Scholar

    [52] 李自珍, 李维德, 石洪华, 等. 生态风险灰色评价模型及其在绿洲盐渍化农田生态系统中的应用[J]. 中国沙漠, 2002(6):95-100.

    Google Scholar

    [53] Li Z Z, Li W D, Shi H H, et al. Gray model for ecological risk assessment and its application in salinization oasis agroecosystem[J]. Journal of Desert Research, 2002(6):95-100.

    Google Scholar

    [54] 李仙岳, 崔佳琪, 史海滨, 等. 基于指示Kriging的土壤盐渍化风险与地下水环境分析[J]. 农业机械学报, 2021, 52(8):297-306.

    Google Scholar

    [55] Li X Y, Cui J Q, Shi H B, et al. Analysis of soil salinization risk and groundwater environment based on indicator Kriging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8):297-306.

    Google Scholar

    [56] 李冬顺, 杨劲松, 姚荣江. 生态风险分析用于苏北滩涂土壤盐渍化风险评估研究[J]. 土壤学报, 2010, 47(5):857-864.

    Google Scholar

    [57] Li D S, Yang J S, Yao R J. Application of ecological risk analysis to soil salinization risk assessment of coastal tidal flat in north Jiangsu Province[J]. Acta Pedologica Sinica, 2010, 47(5):857-864.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(765) PDF downloads(113) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint