China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 34, No. 3
Article Contents

ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. 2022. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai. Remote Sensing for Natural Resources, 34(3): 106-111. doi: 10.6046/zrzyyg.2021291
Citation: ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. 2022. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai. Remote Sensing for Natural Resources, 34(3): 106-111. doi: 10.6046/zrzyyg.2021291

PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai

  • Urban surface subsidence has increasingly severe impacts on human life, making it particularly important to study the methods for effectively monitoring surface subsidence. To monitor the surface subsidence in Shanghai, this study processed 24 scenes of 2019—2020 Sentinel-1A data covering the city using the PS-InSAR technique. After treatment using the permanent scatterer interferometry technique, the residual phase correction was performed using SRTM1 DEM, and the surface subsidence results of the two years were extracted. The analysis of the subsidence rate and cumulative subsidence amplitude in the monitoring results shows that the urban area mainly shows uneven surface subsidence with multiple subsidence funnels, some of which correspond to the historical subsidence data. As shown by time-series surface subsidence data of seldomly selected ground characteristic points, the surface subsidence at these points basically had the same deformation amplitude at different times and highly consistent changing trends, verifying the reliability of the PS-InSAR monitoring method. The results of this study will provide data and decision-making bases for geologic disaster prevention and control in Shanghai.
  • 加载中
  • [1] 张静, 冯东向, 綦巍, 等. 基于SBAS-InSAR技术的盘锦地区地面沉降监测[J]. 工程地质学报, 2018, 26(4):999-1007.

    Google Scholar

    [2] Zhang J, Feng D X, Qi W, et al. Monitoring land subsidence in Panjin region with SBAS-InSAR method[J]. Journal of Engineering, 2018, 26(4):999-1007.

    Google Scholar

    [3] 汪宝存, 朱琳, 潘登, 等. 郑州市地面沉降时空演变规律研究[J]. 国土资源遥感, 2020, 32(3):143-148.doi: 10.6046/gtzyyg.2020.03.19.

    Google Scholar

    [4] Wang B C, Zhu L, Pan D, et al. Research on temporal and spatial evolution law of land subsidence in Zhengzhou[J]. Remote Sensing for Land and Resources, 2020, 32(3):143-148.doi: 10.6046/gtzyyg.2020.03.19.

    Google Scholar

    [5] Yang Q, Ke Y H, Zhang D Y, et al. Multi-Scale analysis of the relationship between land subsidence and buildings:A case study in an eastern Beijing urban area using the PS-InSAR technique[J]. Remote Sensing, 2018, 10(7):1006.

    Google Scholar

    [6] Lyu M Y, Ke Y H, Guo L, et al. Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite Radar interferometry[J]. GIScience and Remote Sensing, 2020, 57(1):140-156.

    Google Scholar

    [7] 袁悦. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    [8] Yan Y. Ground subsidence monitoring and mechanism analysis in Haikou area based on SBAS-InSAR technology[D]. Beijing: China University of Geosciences(Beijing), 2020.

    Google Scholar

    [9] 聂运菊, 刘国祥, 石金峰, 等. 基于PSI技术监测上海市2009年-2010年区域地表沉降[J]. 遥感信息, 2013, 28(2):56-61.

    Google Scholar

    [10] Nie Y J, Liu G X, Shi J F, et al. Ground subsidence of Shanghai from 2009 to 2010 monitored by PSI technique[J]. Remote Sensing Information, 2013, 28(2):56-61.

    Google Scholar

    [11] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.

    Google Scholar

    [12] 高二涛, 范冬林, 付波霖. 基于PS-InSAR和SBAS技术监测南京市地面沉降[J]. 大地测量与地球动力学, 2019, 39(2):158-163.

    Google Scholar

    [13] Gao E T, Fan D L, Fu B L. Land subsidence monitoring of Nanjing area based on PS-InSAR and SBAS technology[J]. Geodesy and Geodynamics, 2019, 39(2):158-163.

    Google Scholar

    [14] 麻源源, 左小清, 麻卫峰. 基于PS-InSAR的天津地区沉降监测及分析[J]. 遥感技术与应用, 2019, 34(6):1324-1331.

    Google Scholar

    [15] Ma Y Y, Zou X Q, Ma W F. Settlement monitoring and analysis of Tianjin area based on PS-InSAR[J]. Remote Sensing Technology and Application, 2019, 34(6):1324-1331.

    Google Scholar

    [16] 刘欣, 商安荣. PS-InSAR和SBAS-InSAR在城市地表沉降监测中的应用对比[J]. 全球定位系统, 2016, 41(2):101-105.

    Google Scholar

    [17] Liu X, Shang A R. Application contrast of PS-InSAR and SBAS-InSAR in urban surface subsidence monitoring[J]. GNSS World of China, 2016, 41(2):101-105.[11] 上海市统计局. 上海统计年鉴2020[M]. 北京: 中国统计出版社, 2020.[11] Shanghai Municipal Bureau of Statistics. Shanghai statistical yearbook 2020[M]. Beijing: China Statistics Press, 2020.

    Google Scholar

    [18] Cigna F, Tapete D. Present-day land subsidence rates,surface faulting hazard and risk in Mexico City with 2014—2020 Sentinel-1 IW InSAR[J]. Remote Sensing of Environment, 2021, 253:1-19.

    Google Scholar

    [19] 张兆旭. 基于PS-InSAR技术的高速铁路沉降监测研究[D]. 北京: 中国地质大学(北京), 2016.

    Google Scholar

    [20] Zhang Z X. Research on settlement monitoring of high speed railway based on PS-InSAR technology[D]. Beijing: China University of Geosciences(Beijing), 2016.

    Google Scholar

    [21] Dumka R K, SuriBabu D, Malik K, et al. PS-InSAR derived deformation study in the Kachchh,Western India[J]. Applied Computing and Geosciences, 2020, 8:1-8.

    Google Scholar

    [22] 熊佳诚, 聂运菊, 罗跃, 等. 利用双极化Sentinel-1数据监测城市地面沉降——以上海市为例[J]. 测绘通报, 2019(11):98-102,129.

    Google Scholar

    [23] Xiong J C, Nie Y J, Luo Y, et al. Monitoring urban land subsidence by dual-polarization Sentinel-1 data:A case study of Shanghai[J]. Bulletin of Surveying and Mapping, 2019(11):98-102,129.

    Google Scholar

    [24] 史玉金. 上海地区地面沉降新特征及对重大市政设施影响研究[D]. 上海: 上海交通大学, 2018.

    Google Scholar

    [25] Shi Y J. Recent characteristics of land subsidence in Shanghai and its effect on performance of key municipal facilities[D]. Shanghai: Shanghai Jiao Tong University, 2018.

    Google Scholar

    [26] 朱菊艳. 沧州地区地面沉降成因机理及沉降量预测研究[D]. 北京: 中国地质大学(北京), 2014.

    Google Scholar

    [27] Zhu J Y. Research on land subsidence mechanism and prediction of settlement in Cangzhou area[D]. Beijing: China University of Geosciences(Beijing), 2014.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2049) PDF downloads(178) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint