China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 34, No. 3
Article Contents

DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. 2022. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV. Remote Sensing for Natural Resources, 34(3): 112-120. doi: 10.6046/zrzyyg.2021258
Citation: DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. 2022. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV. Remote Sensing for Natural Resources, 34(3): 112-120. doi: 10.6046/zrzyyg.2021258

Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV

  • Based on the thermal infrared data from the Landsat8 satellite and a UAV, this study obtained the spatial distribution of the temperature of the sea area near the Fuqing Nuclear Power Plant through inversion. Then, this study verified the reliability of the inversion results using the measured temperature data and investigated the distribution and variation characteristics of the temperature field in the sea area near the power plant. The results are as follows. The inversion results of the temperature are strongly correlated with the measured offshore temperature data and thereby are reliable. Before the nuclear power plant was put into operation, the temperature of the sea area near the nuclear power plant was relatively uniform, without significant temperature differentiation or temperature rise. By contrast, after the nuclear power plant was put into operation, significant temperature differentiation occurred in the surrounding sea area because of the thermal discharge. Moreover, the spatial distribution of thermal discharge and its scale varied greatly under different tides and seasons. Generally, the temperature rise range was wider under ebb tides than under flood tides and was wider in summer than in winter.
  • 加载中
  • [1] 陈晓秋, 商照荣. 核电厂环境影响审查中的温排水问题[J]. 核安全, 2007(2):46-50.

    Google Scholar

    [2] Chen X Q, Shang Z R. The issue of thermal discharge in reviewing the environmental impacts report for nuclear power plant[J]. Nuclear Saftey, 2007(2):46-50.

    Google Scholar

    [3] 於凡, 张永兴. 滨海核电站温排水对海洋生态系统影响的研究[J]. 辐射防护通讯, 2008, 28(1):1-7.

    Google Scholar

    [4] Yu F, Zhang Y X. The review on the effects of thermal effluent from nuclear plants on the marine ecosystem[J]. Radiation Protection Communication, 2008, 28(1):1-7.

    Google Scholar

    [5] 刘永叶, 陈晓秋. 核电厂温排水热影响研究的建议[J]. 辐射防护通讯, 2011, 31(6):20-23.

    Google Scholar

    [6] Liu Y Y, Chen X Q. Suggestion of the study on thermal impact of thermal discharge from NPPs[J]. Radiation Protection Communication, 2011, 31(6):20-23.

    Google Scholar

    [7] 姜晟, 李俊龙, 李旭文. 核电站温排水遥感监测方法研究——以田湾核电站为例[J]. 中国环境监测, 2013, 29(6):46-50.

    Google Scholar

    [8] Jiang S, Li J L, Li X W. A research on the remote sensing monitoring method with the thermal discharge of Tianwan nuclear power station[J]. Environmental Monitoring in China, 2013, 29(6):46-50.

    Google Scholar

    [9] 姚沛林. 滨海核电厂温排水的监测与实践[J]. 红外, 2013, 34(11):43-48.

    Google Scholar

    [10] Yao P L. Monitoring of warm water discharged from coastal nuclear power station[J]. Infrared, 2013, 34(11):43-48.

    Google Scholar

    [11] 贺佳惠, 梁春利, 李名松. 核电站近岸温度场航空热红外遥感测量数据处理研究[J]. 国土资源遥感, 2010, 85(3):51-53.doi: 10.6046/gtzyyg.2010.03.11.

    Google Scholar

    [12] He J H, Liang C L, Li M S. Temperature field airborne thermal remote sensing survey of the alongshore nuclear power station[J]. Remote Sensing for Land and Resources, 2010, 85(3):51-53.doi: 10.6046/gtzyyg.2010.03.11.

    Google Scholar

    [13] Jimenez-Munoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D22): 1-9.

    Google Scholar

    [14] Qin Z H, Karnieli A, Berliner A. A mono-window algorithm for retrieving land surface temperature from Landsat TM and its application to the Israel-Egypt border region[J]. Remote Sensing, 2001, 22:3719-3746.

    Google Scholar

    [15] Price J C. Land surface temperature measurements from the split window channels of the NOAA7 advanced very high resolution radiometer[J]. Journal of Geophysical Research, 1984, 89(d5):231-237.

    Google Scholar

    [16] 吴传庆, 王桥, 王文杰. 利用TM影像监测和评价大亚湾温排水热污染[J]. 中国环境监测, 2006, 22(3):80-84.

    Google Scholar

    [17] Wu C Q, Wang Q, Wang W J. Monitoring and evaluation of thermal pollution of thermal discharge in Daya Bay using TM images[J]. China Environmental Monitoring, 2006, 22 (3):80-84.

    Google Scholar

    [18] 朱利. 基于环境一号红外相机的田湾核电站温排水遥感监测研究[J]. 中国环境科学, 32(s1):63-67.

    Google Scholar

    [19] Zhu L. Study on remote sensing monitoring of temperature and drainage of Tianwan nuclear power station based on environment-1 infrared camera[J]. China Environmental Science, 32 (s1):63-67.

    Google Scholar

    [20] 王祥, 苏岫, 王新新. 基于Landsat8卫星数据的红沿河核电站温排水监测[J]. 红外, 2015, 36(8):22-27.

    Google Scholar

    [21] Wang X, Su X, Wang X X. Thermal drainage monitoring of Hongyanhe nuclear power station based on Landsat8 satellite data[J]. Infrared, 2015, 36 (8):22-27.

    Google Scholar

    [22] 于杰, 李永振, 陈丕茂. 利用Landsat TM6 数据反演大亚湾海水表层温度[J]. 国土资源遥感, 2009, 21(3):24-29.doi: 10.6046/gtzyyg.2009.03.05.

    Google Scholar

    [23] Yu J, Li Y Z, Chen P M. Retrieval of sea surface temperature in Daya Bay using Landsat TM6 data[J]. Remote Sensing for Land and Research, 2009, 21(3):24-29.doi: 10.6046/gtzyyg.2009.03.05.

    Google Scholar

    [24] 许静, 朱利, 姜建. 基于HJ-1B与TM热红外数据的大亚湾核电基地温排水遥感监测[J]. 中国环境科学, 2014, 34(5):1181-1186.

    Google Scholar

    [25] Xu J, Zhu Li, Jiang J. Remote sensing monitoring of temperature and drainage of Daya Bay nuclear power base based on HJ-1B and TM thermal infrared data[J]. China Environmental Science, 2014, 34 (5):1181-1186.

    Google Scholar

    [26] 孙芹芹, 张加晋, 姬厚德. 基于卫星和无人机的后石电厂温排水分布研究[J]. 应用海洋学学报, 2020, 39(2):261-265.

    Google Scholar

    [27] Sun Q Q, Zhang J J, Ji H D. Distribution of thermal water around Houshi Power Plant based on Landsat8 and UVA study[J]. Journal of Applied Oceanography, 2020, 39 (2):261-265.

    Google Scholar

    [28] 王祥, 王新新, 苏岫. 无人机平台航空遥感监测核电站温排水——以辽宁省红沿河核电站为例[J]. 国土资源遥感, 2018, 30(4):182-186.doi: 10.6046/gtzyyg.2018.04.27.

    Google Scholar

    [29] Wang X, Wang X X, Su X. Thermal discharge monitoring of nuclear power plant with aerial remote sensing technology using a UAV platform:Take Hongyanhe Nuclear Power Plant,Liaoning Province,as example[J]. Remote Sensing for Land and Resources, 2018, 30 (4):182-186.doi: 10.6046/gtzyyg.2018.04.27.

    Google Scholar

    [30] 初庆伟, 张洪群, 吴业炜, 等. Landsat8卫星数据应用探讨[J]. 遥感信息, 2013, 28(4):110-114.

    Google Scholar

    [31] Chu Q W, Zhang H Q, Wu Y W, et al. Application research of Landsat8[J]. Remote Sensing Information, 2013, 28(4):110-114.

    Google Scholar

    [32] 陈瀚阅, 朱利, 李家国, 等. 基于Landsat8数据的2种海表温度反演单窗算法对比——以红沿河核电基地海域为例[J]. 国土资源遥感, 2018, 30(1):45-53.doi: 10.6046/gtzyyg.2018.01.07.

    Google Scholar

    [33] Chen H Y, Zhu L, Li J G, et al. A comparison of two mono-window algorithm for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station[J]. Remote Sensing for Land and Resources, 2018, 30(1):45-53.doi: 10.6046/gtzyyg.2018.01.07.

    Google Scholar

    [34] Rozenstein. Derivation of land surface temperature for Landsat8 TIRS using a split window algorithm[J]. Sensors, 2014, 14(14):5768-5780.

    Google Scholar

    [35] 覃志豪. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4):456-466.

    Google Scholar

    [36] Qin Z H. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001, 56(4): 456-466.

    Google Scholar

    [37] Barsi J A, Barker J L, Schott J R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[C]// IGARSS, 2003:3014-3016.

    Google Scholar

    [38] Barsi J A, Schott J R, Palluconi F D, et al. Validation of a web-based atmospheric correction tool for single thermal band instruments[Z]. Earth Observing Systems X, 2005, 5882:1-6.

    Google Scholar

    [39] 耿娟, 何成龙, 刘宪鑫. 基于CSIFT特性的无人机影像匹配[J]. 国土资源遥感, 2016, 28(1):93-100.doi: 10.6046/gtzyyg.2016.01.14.

    Google Scholar

    [40] Geng J, He C L, Liu X X. UAV image matching based on CSIFT feature[J]. Remote Sensing for Land and Resources, 2016, 28 (1):93-100.doi: 10.6046/gtzyyg.2016.01.14.

    Google Scholar

    [41] 王雅萍, 陈宜金, 谢东海, 等. 面向无人机水域影像的自动拼接方法[J]. 长江科学院院报, 2014, 31(5):92-96.

    Google Scholar

    [42] Wang Y P, Chen Y J, Xie D H, et al. Automatic mosaic method for UAV water-area image[J]. Journal of the Yangtze River Sciences Research Institute, 2014, 31(5):92-96.[25] 福清5、6号机组运行阶段环评专题——温排水数值模拟复核研究报告[R]. 中国水利水电科学研究院, 2018, 4:7-11.

    Google Scholar

    [25] Special topic of environmental impact assessment during operation of No.5 and No.6 nuclear power units of Fuqing nuclear power - review research report on numerical simulation of thermal discharge[R]. China Institute of Water Resources and Hydropower Research, 2018, 4:7-11.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1075) PDF downloads(147) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint