| [1] | Song Z, Kuenzer C, Zhu H, et al. Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat8 remote sensing data[J]. International Journal of Coal Geology, 2015,141-142:91-102. 						Google Scholar
						 | 
					
									 					| [2] | Kuenzer C, Zhang J, Sun Y, et al. Coal fires revisited:The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities[J]. International Journal of Coal Geology, 2012, 102:75-86 						Google Scholar
						 | 
					
									 					| [3] | Liang Y, Liang H, Zhu S. Mercury emission from coal seam fire at Wuda,Inner Mongolia,China[J]. Atmospheric Environment, 2014, 83:176-184. 						Google Scholar
						 | 
					
									 					| [4] | 张志敏, 江利明, 柳林, 等. 利用Landsat热红外影像探测地下煤火区范围——以乌达煤田为例[J]. 测绘通报, 2018(3):93-97. 						Google Scholar
						 | 
					
									 					| [5] | Zhang Z M, Jiang L M, Liu L, et al. Detecting the underground coal fire by using Landsat thermal infrared imagery:Taking Wuda coalfield as an example[J]. Bulletin of Surveying and Mapping, 2018(3):93-97. 						Google Scholar
						 | 
					
									 					| [6] | Du X, Cao D, Mishra D, et al. Self-adaptive gradient-based thresholding method for coal fire detection using ASTER thermal infrared data,part I:Methodology and decadal change detection[J]. Remote Sensing, 2015, 7(6):6576-6610. 						Google Scholar
						 | 
					
									 					| [7] | 李峰, 梁汉东, 赵小平, 等. 内蒙古乌达煤田煤火治理效果的遥感监测与评估[J]. 国土资源遥感, 2017, 29(3):217-223.doi: 10.6046/gtzyyg.2017.03.32. 						Google Scholar
						 | 
					
									 					| [8] | Li F, Liang H D, Zhao X P, et al. Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia[J]. Remote Sensing for Land and Resources, 2017, 29(3):217-223.doi: 10.6046/gtzyyg.2017.03.32. 						Google Scholar
						 | 
					
									 					| [9] | Li F, Li J, Liu X, et al. Coal fire detection and evolution of trend analysis based on CBERS-04 thermal infrared imagery[J]. Environmental Earth Sciences, 2020, 79(16):1-15. 						Google Scholar
						 | 
					
									 					| [10] | 蒋卫国, 武建军, 顾磊, 等. 基于夜间热红外光谱的地下煤火监测方法研究[J]. 光谱学与光谱分析, 2011, 31(2):357-361. 						Google Scholar
						 | 
					
									 					| [11] | Jiang W G, Wu J J, Gu L, et al. Monitoring method of undergound coal fire based on nigth thermal infrared remote sensing technology[J]. Spectroscopy and Spectral Analysis, 2011, 31(2):357-361. 						Google Scholar
						 | 
					
									 					| [12] | 郑美楠, 邓喀中, 陈华, 等. 时序累积DInSAR与GIS结合的矿区沉降监测与分析[J]. 煤矿安全, 2017, 48(1):160-163. 						Google Scholar
						 | 
					
									 					| [13] | Zheng M N, Deng K Z, Chen H, et al. Monitoring and analysis of mining subsidence base on timing accumulation DInSAR and GIS[J]. Safety in Coal Mines, 2017, 48(1):160-163. 						Google Scholar
						 | 
					
									 					| [14] | 赵立峰, 范洪冬, 渠俊峰, 等. 基于DS-InSAR的张双楼煤矿长时序地表形变监测方法[J]. 金属矿山, 2021(8):142-149. 						Google Scholar
						 | 
					
									 					| [15] | Zhao L F, Fan H D, Qu J F, et al. Long time-series surface deformation method of Zhangshuanglou coal mine based on DS-InSAR[J]. Metal Mine, 2021(8):142-149. 						Google Scholar
						 | 
					
									 					| [16] | Voigt S, Tetzlaff A, Zhang J, et al. Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China[J]. Elsevier, 2004, 59(1-2):121-136. 						Google Scholar
						 | 
					
									 					| [17] | Xu Y, Fan H, Dang L. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection[J]. International Journal of Remote Sensing, 2021, 42(6):2220-2245. 						Google Scholar
						 | 
					
									 					| [18] | Liu J, Wang Y, Yan S, et al. Underground coal fire detection and monitoring based on Landsat8 and Sentinel-1 data sets in Miquan fire area,Xinjiang[J]. Remote Sensing, 2021, 13(6):1141. 						Google Scholar
						 | 
					
									 					| [19] | 许怡, 范洪冬, 党立波. 基于TIRS和TCP-InSAR的新疆广域煤田火区探测方法[J]. 金属矿山, 2019(10):164-171. 						Google Scholar
						 | 
					
									 					| [20] | Xu Y, Fan H D, Dang L B. Detection method of fire area in Xinjiang wide area coalfield based on TIRS and TCP-InSAR[J]. Metal Mine, 2019(10):164-171. 						Google Scholar
						 | 
					
									 					| [21] | Liu J, Wang Y, Li Y, et al. Underground coal fires identification and monitoring using time-series InSAR with persistent and distributed scatterers:A case study of Miquan coal fire zone in Xinjiang,China[J]. IEEE Access, 2019, 7:164492-164506. 						Google Scholar
						 | 
					
									 					| [22] | Riyas M, Syed T, Kumar H, et al. Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield,India using Sentinel-1 SAR data[J]. Remote Sensing, 2021, 13(8):1521. 						Google Scholar
						 | 
					
									 					| [23] | Zhou L, Zhang D, Wang J, et al. Mapping land subsidence related to underground coal fires in the Wuda coalfield (Northern China) using a small stack of ALOS PALSAR differential interferograms[J]. Remote Sensing, 2013, 5(3):1152-1176. 						Google Scholar
						 | 
					
									 					| [24] | 黄昭权, 张登荣, 王帆, 等. 基于差分干涉SAR的煤田火区地表形变监测[J]. 国土资源遥感, 2010, 22(4):85-90.doi: 10.6046/gtzyyg.2010.04.18. 						Google Scholar
						 | 
					
									 					| [25] | Huang Z Q, Zhang D R, Wang F, et al. Differential SAR interfero-metry for the monitoring of underground coal spontaneous combustion zone surface deformation[J]. Remote Sensing for Land and Resources, 2010, 22(4):85-90.doi: 10.6046/gtzyyg.2010.04.18. 						Google Scholar
						 | 
					
									 					| [26] | Jiang L, Lin H, Ma J, et al. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires:Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115(2):257-268. 						Google Scholar
						 | 
					
									 					| [27] | Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. 						Google Scholar
						 | 
					
									 					| [28] | Jiang M, Ding X, Hanssen R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3):1213-1224. 						Google Scholar
						 | 
					
									 					| [29] | Cao N, Lee H, Jung H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1838-1842. 						Google Scholar
						 | 
					
									 					| [30] | 张建明, 管海晏, 曹代勇, 等. 中国地下煤火研究与治理[M]. 北京: 煤炭工业出版社, 2008:12-21. 						Google Scholar
						 | 
					
									 					| [31] | Zhang J M, Guan H Y, Cao D Y, et al. Underground coal fires in China:Origin,detection,fire-fighting,and prevention[M]. Beijing: China Coal Industry Publishing House, 2018:12-21. 						Google Scholar
						 |