China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 34, No. 3
Article Contents

DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. 2022. Application of airborne LiDAR in the estimation of the mean height of mangrove stand. Remote Sensing for Natural Resources, 34(3): 129-137. doi: 10.6046/zrzyyg.2021237
Citation: DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. 2022. Application of airborne LiDAR in the estimation of the mean height of mangrove stand. Remote Sensing for Natural Resources, 34(3): 129-137. doi: 10.6046/zrzyyg.2021237

Application of airborne LiDAR in the estimation of the mean height of mangrove stand

  • This study constructed a stand mean height inversion model based on LiDAR data, aiming to provide dynamic monitoring of the growth of Sonneratia apetala. Taking the mangrove wetland of Sonneratia apetala in the Maowei Sea of Beibu Gulf as the study object and based on the height and intensity parameters extracted using airborne LiDAR data, this study compared three models, namely random forest, support vector machine, and neural network, based on the coefficient of determination (R2), root mean square error (RMSE), Akachi information criterion (AIC), and Bayesian information criterion (BIC) and then estimated the mean height and spatial distribution of Mangrove in the study area using the optimal model. The results are as follows. The stand mean height of Sonneratia apetala in the study area is 3.90~11.58 m, and Sonneratia apetala with a higher tree height and a larger diameter at breast height is mainly distributed near the tidal trench and the middle part of the study area. In the estimation of the stand mean height of Sonneratia apetala, the maximum percentile height (hmax) had the highest contribution rate, followed by 75%~99% percentile height. The random forest regression model yielded the highest precision (R2=0.938 1,RMSE=0.58 m,AIC=80.50, and BIC=49.05), followed by the support vector machine model (R2 = 0.766 5 and RMSE = 1.27 m in the test stage), and the neural network regression model yielded the worst fitting effects. Overall, the random forest model is the optimal model for the inversion of the stand mean height of Sonneratia apetala in the study area.
  • 加载中
  • [1] 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005(3):129-136.

    Google Scholar

    [2] Pang Y, Li Z Y, Chen E X, et al. LiDAR remote sensing technology and its application in forestry[J]. Scientia Silvae Sinicae, 2005(3):129-136.

    Google Scholar

    [3] Naesset E, Okland T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve[J]. Remote Sensing of Environment, 2002, 79(1):105-115.

    Google Scholar

    [4] Andersen H E, Mcgaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LiDAR data[J]. Remote Sensing of Environment, 2005, 94(4):441-449.

    Google Scholar

    [5] 焦义涛, 邢艳秋, 霍达, 等. 基于机载LiDAR点云估测林分的平均树高[J]. 西北林学院学报, 2015, 30(3):170-174.

    Google Scholar

    [6] Jiao Y T, Xing Y Q, Huo D, et al. Study on mean canopy height estimation from airborne LiDAR point cloud date[J]. Journal of Northwest Forestry University, 2015, 30(3):170-174.

    Google Scholar

    [7] 洪奕丰, 张守攻, 陈伟, 等. 基于机载激光雷达的落叶松组分生物量反演[J]. 林业科学研究, 2019, 32(5):83-90.

    Google Scholar

    [8] Hong Y F, Zhang S G, Chen W, et al. Inversion of biomass components for Larix olgensis plantation using airborne LiDAR[J]. Forest Research, 2019, 32(5):83-90.

    Google Scholar

    [9] Li M, Im J, Quackenbush L J, et al. Forest biomass and carbon stock quantification using airborne LiDAR data:A case study over Huntington Wildlife Forest in the Adirondack Park[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 7(7):3143-3156.

    Google Scholar

    [10] Monnet J M, Chanussot J, Berger F. Support vector regression for the estimation of forest stand parameters using airborne laser scanning[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):580-584.

    Google Scholar

    [11] 鲁林, 周小成, 余治忠, 等. 随机森林算法在机载LiDAR数据林分平均树高估算中的应用研究[J]. 地球信息科学学报, 2016, 18(8):1133-1140.

    Google Scholar

    [12] Lu L, Zhou X C, Yu Z Z, et al. Plot-level forest height inversion using airborne LiDAR data based on the random forest[J]. Journal of Geo-Information Science, 2016, 18(8):1133-1140.

    Google Scholar

    [13] 赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR数据估测林分平均高[J]. 林业科学研究, 2020, 33(4):59-66.

    Google Scholar

    [14] Zhao X, Yue C R, Li C G, et al. Estimation of forest stand mean height based on airborne LiDAR point cloud data[J]. Forest Research, 2020, 33(4):59-66.

    Google Scholar

    [15] 王德智. 结合UAV-LiDAR和卫星遥感数据的红树林多尺度观测方法研究[D]. 武汉: 中国地质大学(武汉), 2020.

    Google Scholar

    [16] Wang D Z. Integration of UAV-LiDAR data and satellite imagery for multi-scale mangrove observation[D]. Wuhan: China University of Geosciences(Wuhan), 2020.

    Google Scholar

    [17] Tian Y C, Huang H, Zhang G Q, et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing[J]. Science of the Total Environment, 2021, 781:146816-146834.

    Google Scholar

    [18] 廖宝文, 郑松发, 陈玉军, 等. 外来红树植物无瓣海桑生物学特性与生态环境适应性分析[J]. 生态学杂志, 2004(1):10-15.

    Google Scholar

    [19] Liao B W, Zheng S F, Chen Y J, et al. Biological characteristics and ecological adaptability for non-indigenous mangrove species Sonneratia apetala[J]. Chinese Journal of Ecology, 2004(1):10-15.

    Google Scholar

    [20] 邓必玉. 广西钦州沿海无瓣海桑入侵性初探[J]. 湖北林业科技, 2020, 49(5):46-52.

    Google Scholar

    [21] Deng B Y. A preliminary exploration on the eological invasion of Sonneratia apetala in Qinzhou area of Guangxi[J]. Hubei Forestry Science and Technology, 2020, 49(5):46-52.

    Google Scholar

    [22] 田义超, 黄远林, 张强, 等. 北部湾典型海岛生态系统服务价值空间异质性对比研究[J]. 海洋科学, 2019, 43(2):60-68.

    Google Scholar

    [23] Tian Y C, Huang Y L Zhang Q, et al. A comparative study of spatial heterogeneity of ecosystem service value in typical islands in Beibu Gulf[J]. Marine Sciences, 2019, 43(2):60-68.

    Google Scholar

    [24] 周生祥. 林分平均树高的求算与分析[J]. 华东森林经理, 1989(3):37-45.

    Google Scholar

    [25] Zhou S X. Calculation and analysis of mean height of tree stand[J]. East China Forest Management, 1989(3):37-45.

    Google Scholar

    [26] Baltsavias E P. Airborne laser scanning:Basic relations and formulas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3):199-214.

    Google Scholar

    [27] 邵为真, 赵富燕, 梁周雁. 基于不规则三角网的渐进加密滤波算法研究[J]. 北京测绘, 2016(6):17-21.

    Google Scholar

    [28] Shao W Z, Zhao F Y, Liang Z Y. The research of improved progressive triangulated irregular network densification filtering algorithm[J]. Beijing Surveying and Mapping, 2016(6):17-21.

    Google Scholar

    [29] Breiman L. Random forest[J]. Machine Learning, 2001, 45:5-32.

    Google Scholar

    [30] Gholami R, Fakhari N. Support vector machine:Principles,parameters,and applications[J]. Handbook of Neural Computation, 2017, 27:515-535.

    Google Scholar

    [31] 欧强新. 基于机器学习的吉林天然针阔混交林生长建模[D]. 北京: 中国林业科学研究院, 2019.

    Google Scholar

    [32] Ou Q X. Modeling stand growth of natural conifer and broadleaf mixed forests in Jilin Province based on machine learning[D]. Beijing: Chinese Academy of Forestry, 2019.

    Google Scholar

    [33] Akaike H T. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.

    Google Scholar

    [34] Schwarz G E. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2):461-464.

    Google Scholar

    [35] Vrieze, Scott I. Model selection and psychological theory:A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)[J]. Psychological methods, 2012, 17(2):228-243.

    Google Scholar

    [36] 张晓君, 管伟, 廖宝文, 等. 珠海人工红树林与天然红树林群落特征比较研究[J]. 生态科学, 2014, 33(2):321-326.

    Google Scholar

    [37] Zhang X J, Guan W, Liao B W, et al. Comparison on the community characteristics between artificial and natural mangroves in Zhuhai City[J]. Ecological Science, 2014, 33(2):321-326.

    Google Scholar

    [38] 黄晓敏, 卢昌义. 厦门海湾典型无瓣海桑人工种群特征和幼苗更新扩散现状研究[J]. 生态科学, 2018, 37(5):1-6.

    Google Scholar

    [39] Huang X M, Lu C Y. Studies on the characteristics of artificial population of Sonneratia apetala and the current recruitment and dispersal of the seedlings in Xiamen Bay[J]. Ecological Science, 2018, 37(5):1-6.

    Google Scholar

    [40] 吴瑞, 陈丹丹, 王道儒, 等. 海南省东寨港红树林资源现状调查分析[J]. 热带农业科学, 2016, 36(9):62-71.

    Google Scholar

    [41] Wu R, Chen D D, Wang D R, et al. Survey of mangrove resources in Dongzhai Harbour of Hainan Province[J]. Chinese Journal of Tropical Agriculture, 2016, 36(9):62-71.

    Google Scholar

    [42] 郑俊鸣, 舒志君, 方笑, 等. 红树林造林修复技术探讨[J]. 防护林科技, 2016(1):99-103.

    Google Scholar

    [43] Zheng J M, Shu Z J, Fang X, et al. Discussion on techniques of mangrove afforestation and rehabilitation[J]. Protection Forest Science and Technology, 2016(1):99-103.

    Google Scholar

    [44] 廖宝文. 中国红树林恢复与重建技术[M]. 北京: 科学出版社, 2010:20-44.

    Google Scholar

    [45] Liao B W. Restoration and teconstruction techniques of mangrove forests in China[M]. Beijing: Science Press, 2010:20-44.

    Google Scholar

    [46] Lu D S, Chen Q, Wang G X, et al. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research, 2012(2):436537-436553.

    Google Scholar

    [47] Brice M, Michael A W, Geordie W H, et al. Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with LiDAR plots[J]. International Journal of Remote Sensing, 2013, 34(12):4406-4424.

    Google Scholar

    [48] Pourrahmati M R, Baghdadi N, Darvishsefat A A, et al. Mapping Lorey’s height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images[J]. European Journal of Remote Sensing, 2018, 51(1):100-115.

    Google Scholar

    [49] Waske B, Benediktsson J A, Árnason, et al. Mapping of hyperspectral AVIRIS data using machine-learning algorithms[J]. Canadian Journal of Remote Sensing, 2009, 35(1):106-116.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(697) PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint