| [1] |
庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005(3):129-136.
Google Scholar
|
| [2] |
Pang Y, Li Z Y, Chen E X, et al. LiDAR remote sensing technology and its application in forestry[J]. Scientia Silvae Sinicae, 2005(3):129-136.
Google Scholar
|
| [3] |
Naesset E, Okland T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve[J]. Remote Sensing of Environment, 2002, 79(1):105-115.
Google Scholar
|
| [4] |
Andersen H E, Mcgaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LiDAR data[J]. Remote Sensing of Environment, 2005, 94(4):441-449.
Google Scholar
|
| [5] |
焦义涛, 邢艳秋, 霍达, 等. 基于机载LiDAR点云估测林分的平均树高[J]. 西北林学院学报, 2015, 30(3):170-174.
Google Scholar
|
| [6] |
Jiao Y T, Xing Y Q, Huo D, et al. Study on mean canopy height estimation from airborne LiDAR point cloud date[J]. Journal of Northwest Forestry University, 2015, 30(3):170-174.
Google Scholar
|
| [7] |
洪奕丰, 张守攻, 陈伟, 等. 基于机载激光雷达的落叶松组分生物量反演[J]. 林业科学研究, 2019, 32(5):83-90.
Google Scholar
|
| [8] |
Hong Y F, Zhang S G, Chen W, et al. Inversion of biomass components for Larix olgensis plantation using airborne LiDAR[J]. Forest Research, 2019, 32(5):83-90.
Google Scholar
|
| [9] |
Li M, Im J, Quackenbush L J, et al. Forest biomass and carbon stock quantification using airborne LiDAR data:A case study over Huntington Wildlife Forest in the Adirondack Park[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 7(7):3143-3156.
Google Scholar
|
| [10] |
Monnet J M, Chanussot J, Berger F. Support vector regression for the estimation of forest stand parameters using airborne laser scanning[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):580-584.
Google Scholar
|
| [11] |
鲁林, 周小成, 余治忠, 等. 随机森林算法在机载LiDAR数据林分平均树高估算中的应用研究[J]. 地球信息科学学报, 2016, 18(8):1133-1140.
Google Scholar
|
| [12] |
Lu L, Zhou X C, Yu Z Z, et al. Plot-level forest height inversion using airborne LiDAR data based on the random forest[J]. Journal of Geo-Information Science, 2016, 18(8):1133-1140.
Google Scholar
|
| [13] |
赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR数据估测林分平均高[J]. 林业科学研究, 2020, 33(4):59-66.
Google Scholar
|
| [14] |
Zhao X, Yue C R, Li C G, et al. Estimation of forest stand mean height based on airborne LiDAR point cloud data[J]. Forest Research, 2020, 33(4):59-66.
Google Scholar
|
| [15] |
王德智. 结合UAV-LiDAR和卫星遥感数据的红树林多尺度观测方法研究[D]. 武汉: 中国地质大学(武汉), 2020.
Google Scholar
|
| [16] |
Wang D Z. Integration of UAV-LiDAR data and satellite imagery for multi-scale mangrove observation[D]. Wuhan: China University of Geosciences(Wuhan), 2020.
Google Scholar
|
| [17] |
Tian Y C, Huang H, Zhang G Q, et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing[J]. Science of the Total Environment, 2021, 781:146816-146834.
Google Scholar
|
| [18] |
廖宝文, 郑松发, 陈玉军, 等. 外来红树植物无瓣海桑生物学特性与生态环境适应性分析[J]. 生态学杂志, 2004(1):10-15.
Google Scholar
|
| [19] |
Liao B W, Zheng S F, Chen Y J, et al. Biological characteristics and ecological adaptability for non-indigenous mangrove species Sonneratia apetala[J]. Chinese Journal of Ecology, 2004(1):10-15.
Google Scholar
|
| [20] |
邓必玉. 广西钦州沿海无瓣海桑入侵性初探[J]. 湖北林业科技, 2020, 49(5):46-52.
Google Scholar
|
| [21] |
Deng B Y. A preliminary exploration on the eological invasion of Sonneratia apetala in Qinzhou area of Guangxi[J]. Hubei Forestry Science and Technology, 2020, 49(5):46-52.
Google Scholar
|
| [22] |
田义超, 黄远林, 张强, 等. 北部湾典型海岛生态系统服务价值空间异质性对比研究[J]. 海洋科学, 2019, 43(2):60-68.
Google Scholar
|
| [23] |
Tian Y C, Huang Y L Zhang Q, et al. A comparative study of spatial heterogeneity of ecosystem service value in typical islands in Beibu Gulf[J]. Marine Sciences, 2019, 43(2):60-68.
Google Scholar
|
| [24] |
周生祥. 林分平均树高的求算与分析[J]. 华东森林经理, 1989(3):37-45.
Google Scholar
|
| [25] |
Zhou S X. Calculation and analysis of mean height of tree stand[J]. East China Forest Management, 1989(3):37-45.
Google Scholar
|
| [26] |
Baltsavias E P. Airborne laser scanning:Basic relations and formulas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3):199-214.
Google Scholar
|
| [27] |
邵为真, 赵富燕, 梁周雁. 基于不规则三角网的渐进加密滤波算法研究[J]. 北京测绘, 2016(6):17-21.
Google Scholar
|
| [28] |
Shao W Z, Zhao F Y, Liang Z Y. The research of improved progressive triangulated irregular network densification filtering algorithm[J]. Beijing Surveying and Mapping, 2016(6):17-21.
Google Scholar
|
| [29] |
Breiman L. Random forest[J]. Machine Learning, 2001, 45:5-32.
Google Scholar
|
| [30] |
Gholami R, Fakhari N. Support vector machine:Principles,parameters,and applications[J]. Handbook of Neural Computation, 2017, 27:515-535.
Google Scholar
|
| [31] |
欧强新. 基于机器学习的吉林天然针阔混交林生长建模[D]. 北京: 中国林业科学研究院, 2019.
Google Scholar
|
| [32] |
Ou Q X. Modeling stand growth of natural conifer and broadleaf mixed forests in Jilin Province based on machine learning[D]. Beijing: Chinese Academy of Forestry, 2019.
Google Scholar
|
| [33] |
Akaike H T. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.
Google Scholar
|
| [34] |
Schwarz G E. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2):461-464.
Google Scholar
|
| [35] |
Vrieze, Scott I. Model selection and psychological theory:A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)[J]. Psychological methods, 2012, 17(2):228-243.
Google Scholar
|
| [36] |
张晓君, 管伟, 廖宝文, 等. 珠海人工红树林与天然红树林群落特征比较研究[J]. 生态科学, 2014, 33(2):321-326.
Google Scholar
|
| [37] |
Zhang X J, Guan W, Liao B W, et al. Comparison on the community characteristics between artificial and natural mangroves in Zhuhai City[J]. Ecological Science, 2014, 33(2):321-326.
Google Scholar
|
| [38] |
黄晓敏, 卢昌义. 厦门海湾典型无瓣海桑人工种群特征和幼苗更新扩散现状研究[J]. 生态科学, 2018, 37(5):1-6.
Google Scholar
|
| [39] |
Huang X M, Lu C Y. Studies on the characteristics of artificial population of Sonneratia apetala and the current recruitment and dispersal of the seedlings in Xiamen Bay[J]. Ecological Science, 2018, 37(5):1-6.
Google Scholar
|
| [40] |
吴瑞, 陈丹丹, 王道儒, 等. 海南省东寨港红树林资源现状调查分析[J]. 热带农业科学, 2016, 36(9):62-71.
Google Scholar
|
| [41] |
Wu R, Chen D D, Wang D R, et al. Survey of mangrove resources in Dongzhai Harbour of Hainan Province[J]. Chinese Journal of Tropical Agriculture, 2016, 36(9):62-71.
Google Scholar
|
| [42] |
郑俊鸣, 舒志君, 方笑, 等. 红树林造林修复技术探讨[J]. 防护林科技, 2016(1):99-103.
Google Scholar
|
| [43] |
Zheng J M, Shu Z J, Fang X, et al. Discussion on techniques of mangrove afforestation and rehabilitation[J]. Protection Forest Science and Technology, 2016(1):99-103.
Google Scholar
|
| [44] |
廖宝文. 中国红树林恢复与重建技术[M]. 北京: 科学出版社, 2010:20-44.
Google Scholar
|
| [45] |
Liao B W. Restoration and teconstruction techniques of mangrove forests in China[M]. Beijing: Science Press, 2010:20-44.
Google Scholar
|
| [46] |
Lu D S, Chen Q, Wang G X, et al. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research, 2012(2):436537-436553.
Google Scholar
|
| [47] |
Brice M, Michael A W, Geordie W H, et al. Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with LiDAR plots[J]. International Journal of Remote Sensing, 2013, 34(12):4406-4424.
Google Scholar
|
| [48] |
Pourrahmati M R, Baghdadi N, Darvishsefat A A, et al. Mapping Lorey’s height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images[J]. European Journal of Remote Sensing, 2018, 51(1):100-115.
Google Scholar
|
| [49] |
Waske B, Benediktsson J A, Árnason, et al. Mapping of hyperspectral AVIRIS data using machine-learning algorithms[J]. Canadian Journal of Remote Sensing, 2009, 35(1):106-116.
Google Scholar
|