China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 33, No. 4
Article Contents

FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong, . 2021. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province. Remote Sensing for Natural Resources, 33(4): 153-161. doi: 10.6046/zrzyyg.2021027
Citation: FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong, . 2021. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province. Remote Sensing for Natural Resources, 33(4): 153-161. doi: 10.6046/zrzyyg.2021027

Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province

  • The recognition and extraction of mine tailing information serve as an important step in the dynamic monitoring of the mine environment. The classification of surface features using medium-low spatial resolution images is mostly conducted based on spectral information. However, some roads and tailings have similar spectral reflectance due to the special environment in mining areas. As a result, it is liable to misclassify tailings as roads in the surface feature classification based on spectral information only, which affects the structural integrity and area statistics of tailing ponds. Given this, this paper comprehensively analyzes the spectral, shape-related, and texture characteristics of iron mine tailings in the Qianxi area, Hebei Province based on high spatial resolution images obtained from the Beijing-2 satellite and proposes an object-oriented classification method based on multiple features. The steps of the method are as follows. Firstly, perform multi-scale segmentation of Beijing-2 images and the reflectance and take the spectral differences of surface features in each band as the spectral characteristic values of surface features. Secondly, extract the values of length-to-width ratio of objects using a covariance matrix and object boundaries and take them as the characteristic values of surface feature shapes. Then, calculate the gray-level co-occurrence matrix using principal component bands, and select the contrast, correlation, and entropy values that can effectively distinguish the texture characteristics between tailings and other surface features as the texture characteristic values of remote sensing images. Finally, conduct object-oriented classification and precision assessment using the nearest neighbor method according to the characteristic information of surface features. The results indicate that the object-oriented classification method can effectively avoid the misclassification of the roads in tailing ponds and thus provide a research basis for the implementation of large-scope and high-precision identification and dynamic monitoring of mine tailings.
  • 加载中
  • [1] Bian Z F, Miao X X, Lei S G, et al. The challenges of reusing mining and mineral-processing wastes[J]. Science, 2012,337(6095):702-703.

    Google Scholar

    [2] 王海军, 王伊杰, 李文超, 等. 全国矿产资源节约与综合利用报告(2019)[J]. 中国国土资源经济, 2020,33(2):2.

    Google Scholar

    [3] Wang H J, Wang Y J, Li W C, et al. The report of mineral resources saving and comprehensive utilization in China(2019)[J]. Natural Resource Economics of China, 2020,33(2):2.

    Google Scholar

    [4] Liu R Z, Liu J, Zhang Z J, et al. Accidental water pollution risk analysis of mine tailings ponds in guanting reservoir watershed,Zhangjiakou City,China[J]. International Journal of Environmental Research and Public Health, 2015,12(12):15269-15284.

    Google Scholar

    [5] 郝利娜, 张志, 何文熹, 等. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.

    Google Scholar

    [6] Hao L N, Zhang Z, He W X, et al. Tailings reservoir recognition factors of the high resolution remote sensing image in southeastern Hubei[J]. Remote Sensing for Land and Resources, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.

    Google Scholar

    [7] 汪金花, 白洋, 刘雨青. 高分辨率铁尾矿遥感光谱特征分析与信息提取[J]. 国土资源科技管理, 2015,32(1):79-85.

    Google Scholar

    [8] Wang J H, Bai Y, Liu Y Q. Spectrum characteristic and information extraction of the iron tailings with high resolution remote sensing[J]. Scientific and Technological Management of Land and Resources, 2015,32(1):79-85.

    Google Scholar

    [9] Ma B D, Chen Y T, Zhang S, et al. Remote sensing extraction method of tailings ponds in ultra-low-grade iron mining area based on spectral characteristics and texture entropy[J]. Entropy, 2018,20(5):345-354.

    Google Scholar

    [10] 黎静, 伍臣鹏, 刘木华, 等. 高光谱成像的猕猴桃形状特征检测[J]. 光谱学与光谱分析, 2020,40(8):2564-2570.

    Google Scholar

    [11] Li J, Wu C P, Liu M H, et al. Detection of shape characteristics of kiwifruit based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2020,40(8):2564-2570.

    Google Scholar

    [12] 胡敏, 滕文娣, 王晓华, 等. 融合局部纹理和形状特征的人脸表情识别[J]. 电子与信息学报, 2018,40(6):1338-1344.

    Google Scholar

    [13] Hu M, Teng W T, Wang X H, et al. Facial expression recognition based on local texture and shape features[J]. Journal of Electronics and Information technology, 2012,40(6):1338-1344.

    Google Scholar

    [14] 宋晓宇, 单新建. 用高分辩率卫星影像辨识城市建筑物[J]. 新疆大学学报(自然科学版), 2002(s1):108-111.

    Google Scholar

    [15] Song X Y, Shan X J. Identification of urban buildings using high resolution satellite images[J]. Journal of Xinjiang University (Natural Science), 2002(s1):108-111.

    Google Scholar

    [16] 黄慧萍. 面向对象影像分析中的尺度问题研究[D]. 北京:中国科学院研究生院(遥感应用研究所), 2003.

    Google Scholar

    [17] Huang H P. Scale issues in object-oriented image analysis[D]. Beijing:Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Applications), 2003.

    Google Scholar

    [18] 代晶晶, 吴亚楠, 王登红, 等. 基于面向对象分类的稀土开采区遥感信息提取方法研究[J]. 地球学报, 2018,39(1):111-118.

    Google Scholar

    [19] Dai J J, Wu Y N, Wang D H, et al. Object-oriented classification for the extraction of remote sensing information in rare earth mining areas[J]. Acta Geoscience Sinica, 2018,39(1):111-118.

    Google Scholar

    [20] 张永彬, 刘佳丽, 汲姣, 等. 露天灰岩矿纹理特征分析及面向对象的分类[J]. 地质与勘探, 2018,54(2):348-357.

    Google Scholar

    [21] Zhang Y B, Liu J L, Ji J, et al. Texture analysis and object-oriented classification of open limestone mines[J]. Geology and Exploration, 2018,54(2):348-357.

    Google Scholar

    [22] 沈占锋, 骆剑承, 胡晓东, 等. 高分辨率遥感影像多尺度均值漂移分割算法研究[J]. 武汉大学学报(信息科学版), 2010,35(3):313-316.

    Google Scholar

    [23] Shen Z F, Luo J C, Hu X D, et al. A mean shift multi-scale segmentation for high-resolution remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2010,35(3):313-316.

    Google Scholar

    [24] 王少军, 冯稳, 孟丹, 等. 面向对象分类方法在铁尾矿堆快速提取中的应用研究[J]. 遥感信息, 2012(2):103-107.

    Google Scholar

    [25] Wang S J, Feng W, Meng D, et al. Rapid information extraction of the iron tailing pile using object-oriented classification technique[J]. Remote Sensing Information, 2012(2):103-107.

    Google Scholar

    [26] 毛宁, 刘慧平, 刘湘平, 等. 基于RMNE方法的多尺度分割最优分割尺度选取[J]. 国土资源遥感, 2019,31(2):10-16.doi: 10.6046/gtzyyg.2019.02.02.

    Google Scholar

    [27] Mao N, Liu H P, Liu X P, et al. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing of Land and Resources, 2019,31(2):10-16.doi: 10.6046/gtzyyg.2019.02.02.

    Google Scholar

    [28] 陈扬洋, 明冬萍, 徐录, 等. 高空间分辨率遥感影像分割定量实验评价方法综述[J]. 地球信息科学学报, 2017,19(6):818-830.

    Google Scholar

    [29] Chen Y Y, Ming D P, Xu L, et al. An overview of quantitative experimental methods for segmentation evaluation of high spatial remote sensing images[J]. Journal of Geo-Information Science, 2017,19(6):818-830.

    Google Scholar

    [30] 孙永军, 童庆禧, 秦其明. 利用面向对象方法提取湿地信息[J]. 国土资源遥感, 2008(1):79-82,108.doi: 10.6046/gtzyyg.2008.01.18.

    Google Scholar

    [31] Sun Y J, Tong Q X, Qin Q M. The object-oriented method for wetland information extraction.[J]Remote Sensing of Land and Resources, 2008(1):79-82,108.doi: 10.6046/gtzyyg.2008.01.18.

    Google Scholar

    [32] 王番, 梁建, 赵海见, 等. 基于形状特征的线状地物提取方法研究[J]. 影像技术, 2014,26(1):50-51,46.

    Google Scholar

    [33] Wang F, Liang J, Zhao H J, et al. Research on methods of linear feature extraction based on shape feature[J]. Imaging Technology, 2014,26(1):50-51,46.

    Google Scholar

    [34] 李智峰, 朱谷昌, 董泰锋, 等. 基于灰度共生矩阵的图像纹理特征地物分类应用[J]. 地质与勘探, 2011,47(3):456-461.

    Google Scholar

    [35] Li Z F, Zhu G C, Dong T F, et al. Application of GLCM-Based texture features to remote sensing image classification[J]. Geology and Prospecting, 2011,47(3):456-461.

    Google Scholar

    [36] Haralick R M. Textural features for image classification[J]. IEEE Transactions on Systems, 1973,3(6):610-621.

    Google Scholar

    [37] Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1973,67(5):786-805.

    Google Scholar

    [38] Blaschke T, Hay G J, Kelly M, et al. Geographic object-based image analysis:Towards a new paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(87):180-191.

    Google Scholar

    [39] 朱彦光. 基于词包模型的地表矿山要素遥感信息提取方法研究[D]. 长沙:湖南师范大学, 2016.

    Google Scholar

    [40] Zhu Y G. Remote sensing information extraction for elements of surface mine based on Bag-of-Word model[D]. Changsha:Hunan Normal University, 2016.

    Google Scholar

    [41] Baatz M, Schape A. Multi-resolution segmentation:An optimization approach for high quality multiscale image segmentation[P].Angewandte Geogr. Information averarbeitung, 2000.

    Google Scholar

    [42] 钟智, 朱曼龙, 张晨, 等. 最近邻分类方法的研究[J]. 计算机科学与探索, 2011,5(5):467-473.

    Google Scholar

    [43] Zhong Z, Zhu M L, Zhang C, et al. Research on nearest neighbors classification techniques[J]. Journal of Frontiers of Computer Science and Technology, 2011,5(5):467-473.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(755) PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint