[1] |
宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013,20(2):293-298.
Google Scholar
|
[2] |
Song W, Chen B M, Liu L. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 2013,20(2):293-298.
Google Scholar
|
[3] |
贺军亮, 韩超山, 韦锐, 等. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
Google Scholar
|
[4] |
He J L, Han C S, Wei R, et al. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land and Resources, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
Google Scholar
|
[5] |
高凯旋, 焦海明, 王新闯. 融合影像纹理、光谱与地形特征的森林冠顶高反演模型[J]. 国土资源遥感, 2020,32(3):63-70.doi: 10.6046/gtzyyg.2020.03.09.
Google Scholar
|
[6] |
Gao K X, Jiao H M, Wang X C. Inversion model of forest canopy height based on image texture,spectral and topographic features[J]. Remote Sensing for Land and Resources, 2020,32(3):63-70.doi: 10.6046/gtzyyg.2020.03.09.
Google Scholar
|
[7] |
段宏伟, 朱荣光, 许卫东, 等. 基于GA和CARS的真空包装冷却羊肉细菌菌落总数高光谱检测[J]. 光谱学与光谱分析, 2017,37(3):847-852.
Google Scholar
|
[8] |
Duan H W, Zhu R G, Xu W D, et al. Hyperspectral imaging detection of total viable count from vacuum packing cooling mutton based on GA and CARS algorithms[J]. Spectroscopy and Spectral Analysis, 2017,37(3):847-852.
Google Scholar
|
[9] |
Le B T, 肖冬, 毛亚纯, 等. 可见、近红外光谱和深度学习CNN-ELM算法的煤炭分类[J]. 光谱学与光谱分析, 2018,38(7):2107-2112.
Google Scholar
|
[10] |
Le B T, Xiao D, Mao Y C, et al. Coal classification based on visible,near-infrared spectroscopy and CNN-ELM algorithm[J]. Spectroscopy and Spectral Analysis, 2018,38(7):2107-2112.
Google Scholar
|
[11] |
汪六三, 鲁翠萍, 王儒敬, 等. 土壤碱解氮含量可见/近红外光谱预测模型优化[J]. 发光学报, 2018,39(7):1016-1023.
Google Scholar
|
[12] |
Wang L S, Lu C P, Wang R J, et al. Optimization for Vis/NIRS prediction model of soil available nitrogen content[J]. Chinese Journal of Luminescence, 2018,39(7):1016-1023.
Google Scholar
|
[13] |
吴倩, 姜琦刚, 史鹏飞, 等. 基于高光谱的土壤碳酸钙含量估算模型研究[J]. 国土资源遥感, 2021,33(1):138-144.doi: 10.6046/gtzyyg.2020095.
Google Scholar
|
[14] |
Wu Q, Jiang Q G, Shi P F, et al. Estimation of soil calcium carbonate content based on hyperspectral data[J]. Remote Sensing for Land and Resources, 2021,33(1):138-144.doi: 10.6046/gtzyyg.2020095.
Google Scholar
|
[15] |
李跑, 周骏, 蒋立文, 等. 窗口竞争性自适应重加权采样策略的近红外特征变量选择方法[J]. 光谱学与光谱分析, 2019,39(5):1428-1432.
Google Scholar
|
[16] |
Li P, Zhou J, Jiang L W, et al. A variable selection approach of near infrared spectra based on window competitive adaptive reweighted sampling strategy[J]. Spectroscopy and Spectral Analysis, 2019,39(5):1428-1432.
Google Scholar
|
[17] |
Li H, Liang Y, Xu Q, et al. Model population analysis for variable selection[J]. Journal of Chemometrics, 2010,24(7-8):418-423.
Google Scholar
|
[18] |
于雷, 章涛, 朱亚星, 等. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值[J]. 农业工程学报, 2018,34(16):148-154.
Google Scholar
|
[19] |
Yu L, Zhang T, Zhu Y X, et al. Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(16):148-154.
Google Scholar
|
[20] |
刘贵珊, 张翀, 樊奈昀, 等. IVISSA算法冷鲜滩羊肉嫩度的高光谱模型优化[J]. 光谱学与光谱分析, 2020,40(8):2558-2563.
Google Scholar
|
[21] |
Liu G S, Zhang C, Fan N Y, et al. Hyperspectral model optimization for tenderness of chilled tan-sheep mutton based on IVISSA[J]. Spectroscopy and Spectral Analysis, 2020,40(8):2558-2563.
Google Scholar
|
[22] |
云永欢, 邓百川, 梁逸曾. 化学建模与模型集群分析[J]. 分析化学, 2015,43(11):1638-1647.
Google Scholar
|
[23] |
Yun Y H, Deng B C, Liang Y Z. Progress of chemical modeling and model population analysis[J]. Chinese Journal of Analytical Chemistry, 2015,43(11):1638-1647.
Google Scholar
|
[24] |
Deng B C, Yun Y H, Liang Y Z, et al. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling[J]. Analyst, 2014,139(19):4836-4845.
Google Scholar
|
[25] |
Wang W, Yun Y, Deng B, et al. Iteratively variable subset optimization for multivariate calibration[J]. RSC Advances, 2015,5(116):95771-95780.
Google Scholar
|
[26] |
Song X Z, Yue H, Hong Y, et al. A novel algorithm for spectral interval combination optimization[J]. Analytica Chimica Acta, 2016,948:19-29.
Google Scholar
|
[27] |
孙凯, 孙彬彬, 周国华, 等. 福建龙海土壤重金属含量特征及影响因素研究[J]. 现代地质, 2018,32(6):1302-1310.
Google Scholar
|
[28] |
Sun K, Sun B B, Zhou G H, et al. Study on concentration characteristics and influencing factors of heavy metals in soils in Longhai,Fujian Province[J]. Geoscience, 2018,32(6):1302-1310.
Google Scholar
|
[29] |
刘智超, 蔡文生, 邵学广. 蒙特卡洛交叉验证用于近红外光谱奇异样本的识别[J]. 中国科学(B辑:化学), 2008,38(4):316-323.
Google Scholar
|
[30] |
Liu Z C, Cai W S, Shao X G. Identification of NIR outlier samples by MCCV[J]. Science in China Series B:Chemistry, 2008,38(4):316-323.
Google Scholar
|
[31] |
Huang G, Huang G, Song S, et al. Trends in extreme learning machines:A review[J]. Neural Networks, 2015,61:32-48.
Google Scholar
|
[32] |
Tan K, Wang H, Zhang Q, et al. An improved estimation model for soil heavy metal(loid) concentration retrieval in mining areas using reflectance spectroscopy[J]. Journal of Soils and Sediments, 2018,18(5):2008-2022.
Google Scholar
|
[33] |
宋相中, 唐果, 张录达, 等. 近红外光谱分析中的变量选择算法研究进展[J]. 光谱学与光谱分析, 2017,37(4):1048-1052.
Google Scholar
|
[34] |
Song X Z, Tang G, Zhang L D, et al. Research advance of variable selection algorithms in near infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2017,37(4):1048-1052. |