| 陈喜峰, 陈秀法, 叶锦华, 2019.东南亚主要花岗岩省(带)及其钨锡矿化特征[J].地质论评, 65(S1): 274-276. 						Google Scholar
						 | 
					
									 					| 刘金梁, 陈永清, 尚志, 2024.腾冲地块晚白垩世小龙河花岗岩年龄及其成矿意义[J].地质通报, 43(5): 839-858. 						Google Scholar
						 | 
					
									 					| 刘书生, 杨永飞, 郭林楠, 等, 2018.东南亚大地构造特征与成矿作用[J].中国地质, 45(5): 863-889. 						Google Scholar
						 | 
					
									 					| 马鹏飞, 夏小平, 徐健, 等, 2021.腾冲早白垩世花岗岩的高分异成因及其构造意义[J].岩石学报, 37(4): 1177-1195. 						Google Scholar
						 | 
					
									 					| 王岳军, 卢向红, 钱鑫, 等, 2022.滇西-东南亚原特提斯南支的造山作用[J].中国科学: 地球科学, 52(11): 2077-2104. 						Google Scholar
						 | 
					
									 					| 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究[J].中国科学: 地球科学, 47(7): 745-765. 						Google Scholar
						 | 
					
									 					| 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb 年龄解释的制约[J].科学通报, 49(16): 1589-1604. 						Google Scholar
						 | 
					
									 					| 杨启军, 徐义刚, 黄小龙, 等, 2006.高黎贡构造带花岗岩的年代学和地球化学及其构造意义[J].岩石学报, 22(4):817-834. 						Google Scholar
						 | 
					
									 					| 余小清, 钱鑫, 卢向红, 等, 2021.西苏门答腊实武牙地区晚三叠世花岗岩锆石年代学及其特提斯构造意义[J].地球科学, 46(8): 2873-2886. 						Google Scholar
						 | 
					
									 					| 张博, 刘亮, 阳杰华, 等, 2023.东南亚锡矿带泰国沙蒙矿床花岗岩成因及其对锡成矿作用的指示[J].地质学报, 97(4):1228-1244. 						Google Scholar
						 | 
					
									 					| 张强, 2022.缅甸南部地区锡矿床成岩成矿作用及其构造环境[D].武汉: 中国地质大学(武汉). 						Google Scholar
						 | 
					
									 					| 周淑敏, 王庆飞, 李龚健, 2018.滇西腾冲地块梁河晚三叠世正长花岗岩地球化学、锆石U-Pb 年代学及其地质意义[J].岩石学报, 34(5): 1359-1375. 						Google Scholar
						 | 
					
									 					| ACHARYYA S K, 2015.Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments[J].International Journal of Earth Sciences, 104: 1235-1251. 						Google Scholar
						 | 
					
									 					| BENDER F, 1983.Geology of Burma[M].Berlin: Gebriider Borntraeger. 						Google Scholar
						 | 
					
									 					| BOEHNKE P, WATSON E B, TRAIL D, et al., 2013.Zircon Saturation Re-revisited[J].Chemical Geology, 351: 324-334. 						Google Scholar
						 | 
					
									 					| BONIN B, 2007.A-type granites and related rocks: Evolution of a concept, problems and prospects[J].Lithos, 97(1-2): 1-29. 						Google Scholar
						 | 
					
									 					| BREAKS F W, MOORE J M, 1992.The Ghost Lake Batholith, Superior Province of Northwestern Ontario: A Fertile, S-Type, Peraluminous Granite-Rare-Element Pegmatite System[J].Canadian Mineralogist, 30(3): 835-876. 						Google Scholar
						 | 
					
									 					| CAO Huawen, PEI Qiuming, ZHANG Shouting, et al., 2017.Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China[J].Asian Earth Science, 137: 220-240. 						Google Scholar
						 | 
					
									 					| CHAPPELL B W, WHITE A J R, 1974.Two contrasting granite types[J].Pacific Geology, 8: 173-174. 						Google Scholar
						 | 
					
									 					| CHAPPELL B W, WHITE A J R, 1992.I and S type granites in the Lachlan Fold Belt[J].Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26. 						Google Scholar
						 | 
					
									 					| CHAPPELL B W, 1999.Aluminium saturation in I-and S-type granites and the char-acterization of fractionated haplogranites[J].Lithos, 46: 535-551. 						Google Scholar
						 | 
					
									 					| CHEN Xiaocui, HU Ruizhong, BI Xianwu, et al., 2014.Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China[J].Mineralium Deposita, 49: 843-860. 						Google Scholar
						 | 
					
									 					| CHEN Xiaocui, HU Ruizhong, BI Xianwu, et al., 2015.Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: Evidences from zircon U-Pb ages and Hf-O isotopes, and wholerock Sr-Nd isotopes[J].Lithos, 212: 93-110. 						Google Scholar
						 | 
					
									 					| CHEN Yongqing, LI Guangjie, QIN Luxue, et al., 2022.Geochronology and geochemistry of Cretaceous-Eocene granites, Tengchong Block(SW China): Petrogenesis and implications for Mesozoic-Cenozoic tectonic evolution of Eastern Tethys[J].Geoscience Frontiers, 13(2): 101338. 						Google Scholar
						 | 
					
									 					| CHEN Xifeng, CHEN Xiufa, YE Jinhua, 2019.Granite Belts Insoutheast Asia And Its Tungsten-Tin Mineralizationcharacteristics[J].Geological Review, 65(S1): 274-276(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| DRIVER L A, CREASER R A, CHACKO T, et al., 2000.Petrogenesis of the cretaceous cassiar batholith, Yukon-British Columbia, Canada: Implications for magmatism in the North American cordilleran interior[J].Geological Society of America Bulletin, 112(7): 1119-1133. 						Google Scholar
						 | 
					
									 					| FRINDT S, TRUMBULL R B, ROMER R L, 2004.Petrogenesis of the Gross Spitzkoppe topaz granite, central western Namibia:A geochemical and Nd-S-Pb isotope study[J].Chemical Geology, 206(1-2): 43-71. 						Google Scholar
						 | 
					
									 					| GARDINER N J, HAWKESWORTH C J, ROBB L J, et al., 2017.Contrasting granite metallogeny through the zircon record: A case study from Myanmar[J].Scientific Reports, 7(1): 748. 						Google Scholar
						 | 
					
									 					| GARDINER N J, ROBB L J, MORLEY C K, et al., 2016.The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system[J].Ore Geology Reviews, 79: 26-45. 						Google Scholar
						 | 
					
									 					| GARDINER N J, SEARLE M P, MORLEY C K, et al., 2018.The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: tectonic and metallogenic implications[J].Gondwana Research, 62: 27-60. 						Google Scholar
						 | 
					
									 					| GRIMES C B, JOHN B E, KELEMEN P B, et al., 2007.Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J].Geology, 35(7): 643-646. 						Google Scholar
						 | 
					
									 					| HALL R, 2012.Late Jurassic–Cenozoic reconstructions of the Indonesian Region and the Indian Ocean[J].Tectonophysics, 570: 1-41. 						Google Scholar
						 | 
					
									 					| HART S R.1984.A large-scale isotope anomaly in the Southern Hemisphere mantle[J].Nature, 309(5971): 753-757. 						Google Scholar
						 | 
					
									 					| HE Xiaohu, LIU Zheng, WANG Guochang, et al., 2020.Petrogenesis and tectonic setting of the Early Cretaceous granitoids in the eastern Tengchong terrane, SW China: Constraint on the evolution ofMeso-Tethys[J].Lithosphere, 12(1): 150-165. 						Google Scholar
						 | 
					
									 					| HOSKIN P W O, 2003.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in Mineralogy and Geochemistry, 53(1): 27-62. 						Google Scholar
						 | 
					
									 					| IRBER W, 1999.The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J].Geochimica et Cosmochimica Acta, 63(3-4): 489-508. 						Google Scholar
						 | 
					
									 					| JANOUŠEK V, FINGER F, ROBERTS M, et al., 2004.Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J].Transactions of the Royal Society of Edinburgh:Earth Science, 95(1/2):141-159. 						Google Scholar
						 | 
					
									 					| JIANG Hai, LI Wenqian, JIANG Shaoyong, et al., 2017.Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia[J].Lithos, 268-271: 32-47. 						Google Scholar
						 | 
					
									 					| LE MAITRE R W, STRECKEISEN A, ZANETTIN B, et al., 2002, Igneous rocks: a classification and glossary of terms[M].Cambridge: Cambridge University Press: 236. 						Google Scholar
						 | 
					
									 					| LI Huan, MYINT A Z, YONEZU K, et al., 2018.Geochemistry and U-Pb geochronology of the Wagone and Hermyingyi A-type granites, southern Myanmar: Implications for tectonic setting, magma evolution and Sn-W mineralization[J].Ore Geology Reviews, 95: 575-592. 						Google Scholar
						 | 
					
									 					| LI Jinxiang, FAN Weiming, ZHANG Liyun, et al., 2019.Subduction of Indian continental lithosphere constrained by Eocene-Oligocene magmatism in northern Myanmar[J].Lithos, 348-349: 105-211. 						Google Scholar
						 | 
					
									 					| LIN T H, MITCHELL A H G, CHUNG S L, et al., 2019.Two parallel magmatic belts with contrasting isotopic characteristics from southern Xizang to Myanmar: Zircon U-Pb and Hf isotopic constraints[J].Journal of the Geological Society, 176(3): 574-587. 						Google Scholar
						 | 
					
									 					| LIU Jinliang, CHEN Yongqing, SHANG Zhi, 2024.Geochronology and mineralization significance of the Late Cretaceous Xiaolonghe granite in the Tengchong Block[J].Geological Bulletin of China, 43(5): 839-858(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| LIU Shusheng, YANG Yongfei, GUO Linnan, et al., 2018.Tectonic characteristics and metallogeny in Southeast Asia[J].Geology in China, 45(5): 863-889(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| LIU Yongsheng, GAO Shan, HU Zhaochu, et al., 2010.Continental and oceanic crust recycling-induced melt–peridotite interactions in the trans-north China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology, 51(1-2): 537-571. 						Google Scholar
						 | 
					
									 					| LUDWIG K R, 2003.Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J].Berkeley Geochronology Center Special Publication, 4: 70. 						Google Scholar
						 | 
					
									 					| MA Pengfei, XIA Xiaoping, XU Jian, et al., 2021.Early-Cretaceous highly fractionated granites from the Tengchong terrane: Petrogenesis and tectonic implication[J].Acta Petrologica Sinica, 37(4): 1177-1195(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| MAKISHIMA A, NATH B N, NAKAMURA E, 2008.New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS[J].Geochemical Journal, 42: 237-246. 						Google Scholar
						 | 
					
									 					| MANIAR P D, PICCOLI P M, 1989.Tectonic discrimination of granitoids[J].GSA Bulletin, 101(5): 635-643. 						Google Scholar
						 | 
					
									 					| MAO Wei, ZHONG Hong, YANG Jiehua, et al., 2020.Combined zircon, molybdenite, and cassiterite geochronology and cassiterite geochemistry of the kuntabin tin-tungsten deposit in Myanmar[J].Economic Geology, 115(3): 603-625. 						Google Scholar
						 | 
					
									 					| MILLER C, SCHUSTER R, KLÖTZLI U, et al., 1999.Post-collisional potassic and ultrapotassic magmatism in SW Xizang: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J].Journal of Petrology, 40(9): 1399-1424. 						Google Scholar
						 | 
					
									 					| MITCHELL A H G, AUSA C A, DEIPARINE L, et al., 2004.The Modi Taung–Nankwe gold district, Slate belt, central Myanmar: Mesothermal veins in a Mesozoic Orogen[J].Journal of Asian Earth Sciences, 23(3): 321-341. 						Google Scholar
						 | 
					
									 					| MITCHELL A, CHUNG Sulin, OO T, et al., 2012.Zircon U-Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean?[J].Journal of Asian Earth Sciences, 56: 1-23. 						Google Scholar
						 | 
					
									 					| MITCHELL A, HTAY M T, HTUN K M, et al., 2006.Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar[J].Journal of Asian Earth Sciences, 29(5): 891-910. 						Google Scholar
						 | 
					
									 					| MYINT A Z, LI Huan, MITCHELL A, et al., 2021.Geology, mineralogy, ore paragenesis, and molybdenite re-Os geochronology of Sn-W (-Mo) mineralization in Padatgyaung and Dawei, Myanmar: Implications for timing of mineralization and tectonic setting[J].Journal of Asian Earth Sciences, 212: 104725. 						Google Scholar
						 | 
					
									 					| MYINT A Z, YONEZU K, BOYCE A J, et al., 2018.Stable Isotope And Geochronological Study Of The Mawchisn-w Deposit, Myanmar: Implications For Timing Of Mineralization And Ore Genesis[J].Ore Geology Review, 95(3): 663-679. 						Google Scholar
						 | 
					
									 					| MYINT A Z, ZAW K, SWE Y, et al., 2017.Chapter 17 Geochemistry and geochronology of granites hosting the Mawchi Sn-W deposit, Myanmar: Implications for tectonic setting and emplacement[J].Geological Society London Memoirs, 48(1):385-400. 						Google Scholar
						 | 
					
									 					| PATIÑO DOUCE A E, JOHNSTON A D, 1991.Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J].Contributions to Mineralogy and Petrology, 107(2):202-218. 						Google Scholar
						 | 
					
									 					| PEARCE J A, HARRIS N B W, TINDLE A G, 1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 25(4): 956-983. 						Google Scholar
						 | 
					
									 					| RAPP R P, WATSON E B, 1995.Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J].Journal of Petrology, 36(4):891-931. 						Google Scholar
						 | 
					
									 					| ROLLINSON H, 1994.Using geochemical data: evaluation, presentation, interpretation[M].London: Routledge. 						Google Scholar
						 | 
					
									 					| SUN S S, MCDONOUGH W F, 1989.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J].Geological Society of London Special Publications, 42(1): 313-345. 						Google Scholar
						 | 
					
									 					| SYLVESTER P J, 1998.Post-collisional strongly peraluminous granites[J].Lithos, 45(1-4): 29-44. 						Google Scholar
						 | 
					
									 					| WANG Jiangang, WU Fuyuan, TAN Xiucheng, et al., 2014.Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon[J].Tectonophysics, 612: 97-105. 						Google Scholar
						 | 
					
									 					| WANG Qing, ZHU Dicheng, ZHAO Zhidan, et al., 2012.Magmatic zircons from I-, S- and A-type granitoids in Xizang: Trace element characteristics and their application to detrital zircon provenance study[J].Journal of Asian Earth Sciences, 53:59-66. 						Google Scholar
						 | 
					
									 					| WANG Yuejun, LU Xianghong, QIAN Xin, et al., 2022.Prototethyan orogenesis in southwest Yunnan and Southeast Asia[J].Science China Earth Sciences, 65: 1921-1947. 						Google Scholar
						 | 
					
									 					| WATSON E B, HARRISON T M, 1983.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters, 64(2):295-304. 						Google Scholar
						 | 
					
									 					| WHALEN J B, CURRIE K L, CHAPPELL B W, 1987.A-type granites: Geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 95(4): 407-419. 						Google Scholar
						 | 
					
									 					| WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al., 2017.Highly fractionated granites: Recognition and research[J].Science China(Earth Sciences), 60(7): 1201-1219. 						Google Scholar
						 | 
					
									 					| WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al., 2017.Highly fractionated granites: Recognition and research[J].Science China Earth Sciences, 60: 1201-1219. 						Google Scholar
						 | 
					
									 					| WU Yuanbao, ZHENG Yongfei, 2004.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chinese Science Bulletin, 49(16): 1589-1604(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| XIE Zhipeng, XUE Chuandong, YANG Tiannan, et al., 2020.Petrogenesis and geodynamic implications of Early Cretaceous highly fractionated leucogranites in the northern Lanping–Simao terrane, Eastern Xizang Plateau[J].Journal of Asian Earth Sciences, 197: 104340. 						Google Scholar
						 | 
					
									 					| YANG Qijun, XU Yigang, HUANG Xiaolong, et al., 2006.Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan: Tectonic implications[J].Acta Petrologica Sinica, 22(4): 817-834(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| YANG Yueheng, ZHANG Hongfu, CHU Zhuyin, et al., 2010.Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS[J].International Journal of Mass Spectrometry, 290(2-3): 120-126. 						Google Scholar
						 | 
					
									 					| YU Xiaoqing, QIAN Xin, LU Xianghong, et al., 2021.Zircon U-Pb geochronology of Late Triassic granites from sibolga area in western Sumatra and its Tethyan tectonic implications[J].Earth Science, 46(8): 2873-2886(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| YUAN Honglin, GAO Shan, LIU Xiaoming, et al., 2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 28(3): 353-370. 						Google Scholar
						 | 
					
									 					| ZAW K, 1990.Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: With special reference to the associated WSn mineralization and their tectonic setting[J].Journal of Southeast Asian Earth Sciences, 4(4):293-335. 						Google Scholar
						 | 
					
									 					| ZHANG Bo, LIU Liang, YANG Jiehua, et al., 2023.Petrogenesis of granites from the Samoeng deposit in Thailand within the Southeast Asian tin belt, and their implications for tin mineralization[J].Acta Geologica Sinica, 97(4): 1228-1244(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| ZHANG Jingyi, PENG Touping, FAN Weiming, et al., 2018.Petrogenesis of the Early Cretaceous granitoids and its mafic enclaves in the Northern Tengchong Terrane, southern margin of the Xizang Plateau and its tectonic implications[J].Lithos, 318: 283-298. 						Google Scholar
						 | 
					
									 					| ZHANG Qiang, 2022.Magmatism, mineralization, and tectonic setting of tin deposits in southern Myanmar[D].Wuhan: China University of Geosciences (Wuhan)(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| ZHANG Qiang, ZHAO Kuidong, LI Wenqian, et al., 2022.Timing and tectonic setting of tin mineralization in southern Myanmar:Constraints from cassiterite and wolframite U-Pb ages[J].Mineralium Deposita, 57(6): 977-999. 						Google Scholar
						 | 
					
									 					| ZHAO Wen Winstong, ZHOU Meifu, STEVEN D, 2023.In situ U-Pb dating of garnet and cassiterite from the Kanbauk W-Sn(-F) skarn deposit, Dawei region, southern Myanmar:New insights on the regional Sn-W metallogeny in the southeast Asian tin belt[J].Economic Geology, 118(5): 1219-1229. 						Google Scholar
						 | 
					
									 					| ZHOU Shumin, WANG Qingfei, LI Gongjian, 2018.Geochemistry, zircon U-Pb geochronology from the Late Triassic syenogranite in Lianghe area, Tengchong Block, and their geological implications[J].Acta Petrologica Sinica, 34(5): 1359-1375(in Chinese with English abstract). 						Google Scholar
						 | 
					
									 					| ZHU Renzhi, LAI Shaocong, SANTOSH M, et al., 2017.Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong–Nujiang Tethys Ocean[J].Lithos, 286:175-190. 						Google Scholar
						 |