2024 Vol. 45, No. 4
Article Contents

ZHU Deyong, XIE Zhipeng, LI Wenchang, CHEN Aibing, JIANG Xiaojun, ZHANG Rucheng, LI Zhipeng, DONG Ziao. 2024. Geochronology, Petrogenesis and Geological Significance of Granites from the Kanbauk Tin-tungsten Mining Area, Myanmar. Acta Geoscientica Sinica, 45(4): 591-608. doi: 10.3975/cagsb.2024.050601
Citation: ZHU Deyong, XIE Zhipeng, LI Wenchang, CHEN Aibing, JIANG Xiaojun, ZHANG Rucheng, LI Zhipeng, DONG Ziao. 2024. Geochronology, Petrogenesis and Geological Significance of Granites from the Kanbauk Tin-tungsten Mining Area, Myanmar. Acta Geoscientica Sinica, 45(4): 591-608. doi: 10.3975/cagsb.2024.050601

Geochronology, Petrogenesis and Geological Significance of Granites from the Kanbauk Tin-tungsten Mining Area, Myanmar

More Information
  • Corresponding author: XIE Zhipeng  
  • The Late Cretaceous to Paleogene granite belt, closely associated with the formation of the Southeast Asian tin belt, is extensively developed in the Myanmar region.However, there is still no unified understanding of the dynamic background and spatiotemporal patterns of granite formation.This study presents a comprehensive investigation of the granite in the Kanbauk mining area of Myanmar through zircon U-Pb dating, petrology, and geochemistry.The research reveals that the Kanbauk granite is predominantly composed of biotite monzogranite, with zircon LA-ICP-MS U-Pb ages of (64.0±0.69) Ma (n=25, MSWD=1.9) and (65.7±1.5) Ma (n=19, MSWD=3.8)for two samples, indicating magmatic emplacement during the Late Cretaceous to early Paleogene.Representative rock samples exhibit high SiO2 (74.5%–77.2%) and negative εNd(t) values (–7.51 to –6.95) with TDM2 ages(1.55–1.51 Ga) suggest that the magma's initial melt originated from partial melting of the Middle Jurassic continental crust and underwent significant fractional crystallization.The granite bodies in the mining area are part of the Late Cretaceous to Paleogene granite belt (90–60 Ma) in Myanmar, and they formed in an arc-trench extensional setting induced by plate subduction.The granite from the Kanbauk mining area, along with tungsten mineralization, represents specific manifestations of magmatic-metamorphic-mineralization events during the eastward subduction of the Neo-Tethyan oceanic crust.
  • 加载中
  • 陈喜峰, 陈秀法, 叶锦华, 2019.东南亚主要花岗岩省(带)及其钨锡矿化特征[J].地质论评, 65(S1): 274-276.

    Google Scholar

    刘金梁, 陈永清, 尚志, 2024.腾冲地块晚白垩世小龙河花岗岩年龄及其成矿意义[J].地质通报, 43(5): 839-858.

    Google Scholar

    刘书生, 杨永飞, 郭林楠, 等, 2018.东南亚大地构造特征与成矿作用[J].中国地质, 45(5): 863-889.

    Google Scholar

    马鹏飞, 夏小平, 徐健, 等, 2021.腾冲早白垩世花岗岩的高分异成因及其构造意义[J].岩石学报, 37(4): 1177-1195.

    Google Scholar

    王岳军, 卢向红, 钱鑫, 等, 2022.滇西-东南亚原特提斯南支的造山作用[J].中国科学: 地球科学, 52(11): 2077-2104.

    Google Scholar

    吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究[J].中国科学: 地球科学, 47(7): 745-765.

    Google Scholar

    吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb 年龄解释的制约[J].科学通报, 49(16): 1589-1604.

    Google Scholar

    杨启军, 徐义刚, 黄小龙, 等, 2006.高黎贡构造带花岗岩的年代学和地球化学及其构造意义[J].岩石学报, 22(4):817-834.

    Google Scholar

    余小清, 钱鑫, 卢向红, 等, 2021.西苏门答腊实武牙地区晚三叠世花岗岩锆石年代学及其特提斯构造意义[J].地球科学, 46(8): 2873-2886.

    Google Scholar

    张博, 刘亮, 阳杰华, 等, 2023.东南亚锡矿带泰国沙蒙矿床花岗岩成因及其对锡成矿作用的指示[J].地质学报, 97(4):1228-1244.

    Google Scholar

    张强, 2022.缅甸南部地区锡矿床成岩成矿作用及其构造环境[D].武汉: 中国地质大学(武汉).

    Google Scholar

    周淑敏, 王庆飞, 李龚健, 2018.滇西腾冲地块梁河晚三叠世正长花岗岩地球化学、锆石U-Pb 年代学及其地质意义[J].岩石学报, 34(5): 1359-1375.

    Google Scholar

    ACHARYYA S K, 2015.Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments[J].International Journal of Earth Sciences, 104: 1235-1251.

    Google Scholar

    BENDER F, 1983.Geology of Burma[M].Berlin: Gebriider Borntraeger.

    Google Scholar

    BOEHNKE P, WATSON E B, TRAIL D, et al., 2013.Zircon Saturation Re-revisited[J].Chemical Geology, 351: 324-334.

    Google Scholar

    BONIN B, 2007.A-type granites and related rocks: Evolution of a concept, problems and prospects[J].Lithos, 97(1-2): 1-29.

    Google Scholar

    BREAKS F W, MOORE J M, 1992.The Ghost Lake Batholith, Superior Province of Northwestern Ontario: A Fertile, S-Type, Peraluminous Granite-Rare-Element Pegmatite System[J].Canadian Mineralogist, 30(3): 835-876.

    Google Scholar

    CAO Huawen, PEI Qiuming, ZHANG Shouting, et al., 2017.Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China[J].Asian Earth Science, 137: 220-240.

    Google Scholar

    CHAPPELL B W, WHITE A J R, 1974.Two contrasting granite types[J].Pacific Geology, 8: 173-174.

    Google Scholar

    CHAPPELL B W, WHITE A J R, 1992.I and S type granites in the Lachlan Fold Belt[J].Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26.

    Google Scholar

    CHAPPELL B W, 1999.Aluminium saturation in I-and S-type granites and the char-acterization of fractionated haplogranites[J].Lithos, 46: 535-551.

    Google Scholar

    CHEN Xiaocui, HU Ruizhong, BI Xianwu, et al., 2014.Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China[J].Mineralium Deposita, 49: 843-860.

    Google Scholar

    CHEN Xiaocui, HU Ruizhong, BI Xianwu, et al., 2015.Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: Evidences from zircon U-Pb ages and Hf-O isotopes, and wholerock Sr-Nd isotopes[J].Lithos, 212: 93-110.

    Google Scholar

    CHEN Yongqing, LI Guangjie, QIN Luxue, et al., 2022.Geochronology and geochemistry of Cretaceous-Eocene granites, Tengchong Block(SW China): Petrogenesis and implications for Mesozoic-Cenozoic tectonic evolution of Eastern Tethys[J].Geoscience Frontiers, 13(2): 101338.

    Google Scholar

    CHEN Xifeng, CHEN Xiufa, YE Jinhua, 2019.Granite Belts Insoutheast Asia And Its Tungsten-Tin Mineralizationcharacteristics[J].Geological Review, 65(S1): 274-276(in Chinese with English abstract).

    Google Scholar

    DRIVER L A, CREASER R A, CHACKO T, et al., 2000.Petrogenesis of the cretaceous cassiar batholith, Yukon-British Columbia, Canada: Implications for magmatism in the North American cordilleran interior[J].Geological Society of America Bulletin, 112(7): 1119-1133.

    Google Scholar

    FRINDT S, TRUMBULL R B, ROMER R L, 2004.Petrogenesis of the Gross Spitzkoppe topaz granite, central western Namibia:A geochemical and Nd-S-Pb isotope study[J].Chemical Geology, 206(1-2): 43-71.

    Google Scholar

    GARDINER N J, HAWKESWORTH C J, ROBB L J, et al., 2017.Contrasting granite metallogeny through the zircon record: A case study from Myanmar[J].Scientific Reports, 7(1): 748.

    Google Scholar

    GARDINER N J, ROBB L J, MORLEY C K, et al., 2016.The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system[J].Ore Geology Reviews, 79: 26-45.

    Google Scholar

    GARDINER N J, SEARLE M P, MORLEY C K, et al., 2018.The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: tectonic and metallogenic implications[J].Gondwana Research, 62: 27-60.

    Google Scholar

    GRIMES C B, JOHN B E, KELEMEN P B, et al., 2007.Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J].Geology, 35(7): 643-646.

    Google Scholar

    HALL R, 2012.Late Jurassic–Cenozoic reconstructions of the Indonesian Region and the Indian Ocean[J].Tectonophysics, 570: 1-41.

    Google Scholar

    HART S R.1984.A large-scale isotope anomaly in the Southern Hemisphere mantle[J].Nature, 309(5971): 753-757.

    Google Scholar

    HE Xiaohu, LIU Zheng, WANG Guochang, et al., 2020.Petrogenesis and tectonic setting of the Early Cretaceous granitoids in the eastern Tengchong terrane, SW China: Constraint on the evolution ofMeso-Tethys[J].Lithosphere, 12(1): 150-165.

    Google Scholar

    HOSKIN P W O, 2003.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in Mineralogy and Geochemistry, 53(1): 27-62.

    Google Scholar

    IRBER W, 1999.The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J].Geochimica et Cosmochimica Acta, 63(3-4): 489-508.

    Google Scholar

    JANOUŠEK V, FINGER F, ROBERTS M, et al., 2004.Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J].Transactions of the Royal Society of Edinburgh:Earth Science, 95(1/2):141-159.

    Google Scholar

    JIANG Hai, LI Wenqian, JIANG Shaoyong, et al., 2017.Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia[J].Lithos, 268-271: 32-47.

    Google Scholar

    LE MAITRE R W, STRECKEISEN A, ZANETTIN B, et al., 2002, Igneous rocks: a classification and glossary of terms[M].Cambridge: Cambridge University Press: 236.

    Google Scholar

    LI Huan, MYINT A Z, YONEZU K, et al., 2018.Geochemistry and U-Pb geochronology of the Wagone and Hermyingyi A-type granites, southern Myanmar: Implications for tectonic setting, magma evolution and Sn-W mineralization[J].Ore Geology Reviews, 95: 575-592.

    Google Scholar

    LI Jinxiang, FAN Weiming, ZHANG Liyun, et al., 2019.Subduction of Indian continental lithosphere constrained by Eocene-Oligocene magmatism in northern Myanmar[J].Lithos, 348-349: 105-211.

    Google Scholar

    LIN T H, MITCHELL A H G, CHUNG S L, et al., 2019.Two parallel magmatic belts with contrasting isotopic characteristics from southern Xizang to Myanmar: Zircon U-Pb and Hf isotopic constraints[J].Journal of the Geological Society, 176(3): 574-587.

    Google Scholar

    LIU Jinliang, CHEN Yongqing, SHANG Zhi, 2024.Geochronology and mineralization significance of the Late Cretaceous Xiaolonghe granite in the Tengchong Block[J].Geological Bulletin of China, 43(5): 839-858(in Chinese with English abstract).

    Google Scholar

    LIU Shusheng, YANG Yongfei, GUO Linnan, et al., 2018.Tectonic characteristics and metallogeny in Southeast Asia[J].Geology in China, 45(5): 863-889(in Chinese with English abstract).

    Google Scholar

    LIU Yongsheng, GAO Shan, HU Zhaochu, et al., 2010.Continental and oceanic crust recycling-induced melt–peridotite interactions in the trans-north China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology, 51(1-2): 537-571.

    Google Scholar

    LUDWIG K R, 2003.Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J].Berkeley Geochronology Center Special Publication, 4: 70.

    Google Scholar

    MA Pengfei, XIA Xiaoping, XU Jian, et al., 2021.Early-Cretaceous highly fractionated granites from the Tengchong terrane: Petrogenesis and tectonic implication[J].Acta Petrologica Sinica, 37(4): 1177-1195(in Chinese with English abstract).

    Google Scholar

    MAKISHIMA A, NATH B N, NAKAMURA E, 2008.New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS[J].Geochemical Journal, 42: 237-246.

    Google Scholar

    MANIAR P D, PICCOLI P M, 1989.Tectonic discrimination of granitoids[J].GSA Bulletin, 101(5): 635-643.

    Google Scholar

    MAO Wei, ZHONG Hong, YANG Jiehua, et al., 2020.Combined zircon, molybdenite, and cassiterite geochronology and cassiterite geochemistry of the kuntabin tin-tungsten deposit in Myanmar[J].Economic Geology, 115(3): 603-625.

    Google Scholar

    MILLER C, SCHUSTER R, KLÖTZLI U, et al., 1999.Post-collisional potassic and ultrapotassic magmatism in SW Xizang: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J].Journal of Petrology, 40(9): 1399-1424.

    Google Scholar

    MITCHELL A H G, AUSA C A, DEIPARINE L, et al., 2004.The Modi Taung–Nankwe gold district, Slate belt, central Myanmar: Mesothermal veins in a Mesozoic Orogen[J].Journal of Asian Earth Sciences, 23(3): 321-341.

    Google Scholar

    MITCHELL A, CHUNG Sulin, OO T, et al., 2012.Zircon U-Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean?[J].Journal of Asian Earth Sciences, 56: 1-23.

    Google Scholar

    MITCHELL A, HTAY M T, HTUN K M, et al., 2006.Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar[J].Journal of Asian Earth Sciences, 29(5): 891-910.

    Google Scholar

    MYINT A Z, LI Huan, MITCHELL A, et al., 2021.Geology, mineralogy, ore paragenesis, and molybdenite re-Os geochronology of Sn-W (-Mo) mineralization in Padatgyaung and Dawei, Myanmar: Implications for timing of mineralization and tectonic setting[J].Journal of Asian Earth Sciences, 212: 104725.

    Google Scholar

    MYINT A Z, YONEZU K, BOYCE A J, et al., 2018.Stable Isotope And Geochronological Study Of The Mawchisn-w Deposit, Myanmar: Implications For Timing Of Mineralization And Ore Genesis[J].Ore Geology Review, 95(3): 663-679.

    Google Scholar

    MYINT A Z, ZAW K, SWE Y, et al., 2017.Chapter 17 Geochemistry and geochronology of granites hosting the Mawchi Sn-W deposit, Myanmar: Implications for tectonic setting and emplacement[J].Geological Society London Memoirs, 48(1):385-400.

    Google Scholar

    PATIÑO DOUCE A E, JOHNSTON A D, 1991.Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J].Contributions to Mineralogy and Petrology, 107(2):202-218.

    Google Scholar

    PEARCE J A, HARRIS N B W, TINDLE A G, 1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 25(4): 956-983.

    Google Scholar

    RAPP R P, WATSON E B, 1995.Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J].Journal of Petrology, 36(4):891-931.

    Google Scholar

    ROLLINSON H, 1994.Using geochemical data: evaluation, presentation, interpretation[M].London: Routledge.

    Google Scholar

    SUN S S, MCDONOUGH W F, 1989.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J].Geological Society of London Special Publications, 42(1): 313-345.

    Google Scholar

    SYLVESTER P J, 1998.Post-collisional strongly peraluminous granites[J].Lithos, 45(1-4): 29-44.

    Google Scholar

    WANG Jiangang, WU Fuyuan, TAN Xiucheng, et al., 2014.Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon[J].Tectonophysics, 612: 97-105.

    Google Scholar

    WANG Qing, ZHU Dicheng, ZHAO Zhidan, et al., 2012.Magmatic zircons from I-, S- and A-type granitoids in Xizang: Trace element characteristics and their application to detrital zircon provenance study[J].Journal of Asian Earth Sciences, 53:59-66.

    Google Scholar

    WANG Yuejun, LU Xianghong, QIAN Xin, et al., 2022.Prototethyan orogenesis in southwest Yunnan and Southeast Asia[J].Science China Earth Sciences, 65: 1921-1947.

    Google Scholar

    WATSON E B, HARRISON T M, 1983.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters, 64(2):295-304.

    Google Scholar

    WHALEN J B, CURRIE K L, CHAPPELL B W, 1987.A-type granites: Geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 95(4): 407-419.

    Google Scholar

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al., 2017.Highly fractionated granites: Recognition and research[J].Science China(Earth Sciences), 60(7): 1201-1219.

    Google Scholar

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al., 2017.Highly fractionated granites: Recognition and research[J].Science China Earth Sciences, 60: 1201-1219.

    Google Scholar

    WU Yuanbao, ZHENG Yongfei, 2004.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chinese Science Bulletin, 49(16): 1589-1604(in Chinese with English abstract).

    Google Scholar

    XIE Zhipeng, XUE Chuandong, YANG Tiannan, et al., 2020.Petrogenesis and geodynamic implications of Early Cretaceous highly fractionated leucogranites in the northern Lanping–Simao terrane, Eastern Xizang Plateau[J].Journal of Asian Earth Sciences, 197: 104340.

    Google Scholar

    YANG Qijun, XU Yigang, HUANG Xiaolong, et al., 2006.Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan: Tectonic implications[J].Acta Petrologica Sinica, 22(4): 817-834(in Chinese with English abstract).

    Google Scholar

    YANG Yueheng, ZHANG Hongfu, CHU Zhuyin, et al., 2010.Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS[J].International Journal of Mass Spectrometry, 290(2-3): 120-126.

    Google Scholar

    YU Xiaoqing, QIAN Xin, LU Xianghong, et al., 2021.Zircon U-Pb geochronology of Late Triassic granites from sibolga area in western Sumatra and its Tethyan tectonic implications[J].Earth Science, 46(8): 2873-2886(in Chinese with English abstract).

    Google Scholar

    YUAN Honglin, GAO Shan, LIU Xiaoming, et al., 2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 28(3): 353-370.

    Google Scholar

    ZAW K, 1990.Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: With special reference to the associated WSn mineralization and their tectonic setting[J].Journal of Southeast Asian Earth Sciences, 4(4):293-335.

    Google Scholar

    ZHANG Bo, LIU Liang, YANG Jiehua, et al., 2023.Petrogenesis of granites from the Samoeng deposit in Thailand within the Southeast Asian tin belt, and their implications for tin mineralization[J].Acta Geologica Sinica, 97(4): 1228-1244(in Chinese with English abstract).

    Google Scholar

    ZHANG Jingyi, PENG Touping, FAN Weiming, et al., 2018.Petrogenesis of the Early Cretaceous granitoids and its mafic enclaves in the Northern Tengchong Terrane, southern margin of the Xizang Plateau and its tectonic implications[J].Lithos, 318: 283-298.

    Google Scholar

    ZHANG Qiang, 2022.Magmatism, mineralization, and tectonic setting of tin deposits in southern Myanmar[D].Wuhan: China University of Geosciences (Wuhan)(in Chinese with English abstract).

    Google Scholar

    ZHANG Qiang, ZHAO Kuidong, LI Wenqian, et al., 2022.Timing and tectonic setting of tin mineralization in southern Myanmar:Constraints from cassiterite and wolframite U-Pb ages[J].Mineralium Deposita, 57(6): 977-999.

    Google Scholar

    ZHAO Wen Winstong, ZHOU Meifu, STEVEN D, 2023.In situ U-Pb dating of garnet and cassiterite from the Kanbauk W-Sn(-F) skarn deposit, Dawei region, southern Myanmar:New insights on the regional Sn-W metallogeny in the southeast Asian tin belt[J].Economic Geology, 118(5): 1219-1229.

    Google Scholar

    ZHOU Shumin, WANG Qingfei, LI Gongjian, 2018.Geochemistry, zircon U-Pb geochronology from the Late Triassic syenogranite in Lianghe area, Tengchong Block, and their geological implications[J].Acta Petrologica Sinica, 34(5): 1359-1375(in Chinese with English abstract).

    Google Scholar

    ZHU Renzhi, LAI Shaocong, SANTOSH M, et al., 2017.Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong–Nujiang Tethys Ocean[J].Lithos, 286:175-190.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(162) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint