|
陈守余, 赵鹏大, 童祥, 等.2011.个旧东区蚀变花岗岩型锡铜多金属矿床成矿特征及找矿意义[J].地球科学(中国地质大学学报), 36(2): 277-281.
Google Scholar
|
|
贾润幸, 方维萱, 隗雪燕, 2014.云南个旧锡矿花岗岩地球化学特征及构造环境研究[J].矿产勘查, 5(2): 257-266.
Google Scholar
|
|
廖时理, 陈守余, 姚涛, 等, 2014.个旧西凹铜-锡多金属矿床地球化学特征及地质意义[J].大地构造与成矿学, 38(3):635-646.
Google Scholar
|
|
马振飞, 陈图宏, 2001.云南个旧塘子凹锡多金属矿床地质特征[J].矿物学报, (4): 578-584.
Google Scholar
|
|
毛景文, 程彦博, 郭春丽, 等, 2008.云南个旧锡矿田: 矿床模型及若干问题讨论[J].地质学报, 82(11): 1455-1467.
Google Scholar
|
|
欧阳恒, 彭省临, 谷湘平, 等, 2014.个旧老卡岩体凹陷带岩矿特征与成矿机理分析[J].矿产与地质, 28(1): 88-92.
Google Scholar
|
|
彭强, 江小均, 李超, 等, 2021.云南个旧西凹蚀变花岗岩型铜-锡多金属矿床萤石地球化学特征及其地质意义[J].矿床地质, 40(6): 1182-1198.
Google Scholar
|
|
王登红, 陈毓川, 1996.广西大厂电气石的成分与成因初探[J].岩石矿物学杂志, (3): 89-97.
Google Scholar
|
|
冶金工业部西南冶金地质勘探公司(308 地质队), 1984.个旧锡矿地质[M].北京: 冶金工业出版社: 236.
Google Scholar
|
|
BAKSHEEV I A, TRUMBULL R B, POPOV M P, et al., 2018.Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia[J].Mineralium Deposita, 53(7): 1-19.
Google Scholar
|
|
BALEN D, BROSKA I, 2011.Tourmaline nodules: products of devolatilization within the final evolutionary stage of granitic melt? Geological Society, London[J].Special Publications, 350: 53-68.
Google Scholar
|
|
CHEN Shouyu, ZHAO Pengda, TONG Xiang, et al., 2011.Metallogenic characteristics and prospecting significance of altered granite type tin copper polymetallic deposits in the eastern Gejiu area[J].Journal of Earth Science (China University of Geosciences), 36(2): 277-281(in Chinese with English abstract).
Google Scholar
|
|
CHENG Yanbo, MAO Jingwen, CHANG Zhaoshan, et al., 2013b.The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar-39Ar geochronology[J].Ore Geology Reviews, 53: 50-62.
Google Scholar
|
|
CHENG Y, MAO J, RUSK B, et al., 2012.Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China[J].Ore Geology Reviews, 48: 180-196.
Google Scholar
|
|
CHENG Yanbo, MAO Jingwen, SPANDLER C, 2013a.Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China[J].Lithos, 175-176: 213-229.
Google Scholar
|
|
CHENG Yanbo, MAO Jingwen, ZHU Xiangkun, et al., 2015.Iron isotope fractionation during supergene weathering process and its application to constrain ore genesis in Gaosong deposit, Gejiu district, SW China[J].Gondwana Research, 27:1283-1291.
Google Scholar
|
|
CODEO M S, WEIS P, TRUMBULL R B, et al., 2017.Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit Portugal[J].Chemical Geology, 468: 1-16.
Google Scholar
|
|
CODEO M S, WEIS P, TRUMBULL R B, et al., 2021.The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu Deposit, Portugal[J].Mineralium Deposita, 56: 481-508.
Google Scholar
|
|
DUCHOSLAV M, MARKS M A, DROST K, et al., 2017.Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: The Cornubian Batholith, SW England[J].Ore Geology Reviews, 83: 215-234.
Google Scholar
|
|
GUO Jia, XIANG Lu, ZHANG Rongqing, et al., 2022.Chemical and boron isotopic variations of tourmaline deciphering magmatic-hydrothermal evolution at the Gejiu Sn-polymetallic district, South China[J].Chemical Geology, 593: 120698.
Google Scholar
|
|
GUO Jia, ZHANG Rongqing, SUN Weidong, et al., 2018.Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U-Pb ages and trace element compositions[J].Ore Geology Reviews, 95: 863-879.
Google Scholar
|
|
HARLAUX M, KOUZMANOV K, GIALLI S, et al., 2020.Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: the world-class San Rafael tin (-copper) deposit, Peru[J].Economic Geology, 115: 1665-1697.
Google Scholar
|
|
HARLAUX M, MERCADIER J, MARIGNAC C, et al., 2019.Origin of the atypical Puy-les-Vignes W breccia pipe (Massif Central, France) constrained by trace element and boron isotopic composition of tourmaline[J].Ore Geology Reviews, 114: 103132.
Google Scholar
|
|
HENRY D J, DUTROW B L, 1996.Metamorphic tourmaline and its petrologic applications[J].Reviews in Mineralogy and Geochemistry, 33: 503-558.
Google Scholar
|
|
HENRY D J, GUIDOTTI C V, 1985.Tourmaline as a petrogenetic indicator mineral-An example from the staurolite-grade metapelites of NW Maine[J].American Mineralogist, 70(1): 1-15.
Google Scholar
|
|
HENRY D J, NOVAK M, HAWTHORNE F C, et al., 2011.Nomenclature of the tourmaline-supergroup minerals[J].American Mineralogist, 96(1): 895-913.
Google Scholar
|
|
HERVIG R L, MOORE G M, WILLIAMS L B, et al., 2002.Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt[J].American Mineralogist, 87:769-774.
Google Scholar
|
|
HONG W, COOKE D R, ZHANG L, et al., 2017.Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: Characteristics, origins, and implications for tin mineralization[J].American Mineralogist, 102: 876-899.
Google Scholar
|
|
HOU Kejun, LI Yanhe, XIAO Yingkai, et al., 2010.In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS[J].Chinese Science Bulletin, 55: 3305-3311.
Google Scholar
|
|
HU Dalong, JIANG Shaoyong, 2020.In-situ elemental and boron isotopic variations of tourmaline from the Maogongdong deposit in the Dahutang W-Cu ore field of northern Jiangxi Province, South China: Insights into magmatic-hydrothermal evolution[J].Ore Geology Reviews, 122: 103502.
Google Scholar
|
|
JIA Runxing, FANG Weixuan, Hu Ruizhong, 2010.Mineral Geochemical Compositions of Tourmalines and Their Significance in the Gejiu Tin Polymetallic Deposits, Yunnan, China[J].Acta Geologica Sinica (English Edition), 84(1): 155-166.
Google Scholar
|
|
JIA Runxing, FANG Weixuan, WEI Xueyan, 2014 Geochemical characteristics and tectonic environment of granite in Gejiu tin deposit, Yunnan[J].Mineral exploration, 5(2): 257-266(in Chinese with English abstract).
Google Scholar
|
|
JIANG Shaoyong, RADVANEC M, NAKAMURA E, et al., 2008.Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution[J].Lithos, 106: 1-11.
Google Scholar
|
|
KALIWODA M, MARSCHALL H R, MARKS M A, et al., 2011.Boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes[J].Lithos, 125: 51-64.
Google Scholar
|
|
KOWALSKI P M, WUNDER B, JAHN S, 2013.Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T[J].Geochimica et Cosmochimica Acta, 101: 285-301.
Google Scholar
|
|
LIAO Shili, CHEN Shouyu, DENG Xiaohu, et al., 2014.Fluid inclusion characteristics and geological significance of the Xi’ao copper–tin polymetallic deposit in Gejiu, Yunnan Province[J].Journal of Asian Earth Sciences, 79: 455-467.
Google Scholar
|
|
LIAO Shili, CHEN Shouyu, YAO Tao, et al., 2014.Geochemical characteristics and geological significance of the Gejiu Xi’ao copper tin polymetallic deposit[J].Tectonics and Metallogeny, 38: 635-646(in Chinese with English abstract).
Google Scholar
|
|
LIU Tao, JIANG Shaoyong, 2021.Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid[J].American Mineralogist: Journal of Earth and Planetary Materials, 106: 994-1008.
Google Scholar
|
|
LIU Tao, JIANG Shaoyong, SU Huimin, et al., 2023.Tourmaline as a tracer of magmatic-hydrothermal evolution and potential Nb-Ta-(W-Sn) mineralization from the Lingshan granite batholith, Jiangxi province, southeast China[J].Lithos, 438-439:107016.
Google Scholar
|
|
LIU Yongsheng, HU Zhaochu, ZONG Keqing, et al., 2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 55: 1535-1546.
Google Scholar
|
|
LONDON D, HERVIG R L, MORGAN G B, 1988.Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa[J].Contributions to Mineralogy & Petrology, 99: 360-373.
Google Scholar
|
|
LONDON D, MANNING D A C, 1995.Chemical variation and significance of tourmaline from Southwest England[J].Economic Geology, 90: 495-519.
Google Scholar
|
|
MA Zhenfei, CHEN Tuhong, 2001 Geological characteristics of the Gejiutangzi'ao tin polymetallic deposit in Yunnan[J].Journal of Mineralogy, (4): 578-584(in Chinese with English abstract).
Google Scholar
|
|
MAO Jingwen, CHENG Yanbo, GUO Chunli, et al., 2008 Yunnan Gejiu Tin Mine Field: Deposit Model and Discussion of Several Issues[J].Journal of Geology, 82(11): 1455-1467(in Chinese with English abstract).
Google Scholar
|
|
MARSCHALL H R, JIANG S Y, 2011.Tourmaline isotopes: no element left behind[J].Elements, 7: 313-319.
Google Scholar
|
|
MEYER C, WUNDER B, MEIXNER A, et al., 2008.Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation[J].Contributions to Mineralogy& Petrology, 156: 259-267.
Google Scholar
|
|
OUYANG Heng, PENG Shenglin, GU Xiangping, et al., 2014 Analysis of rock and mineral characteristics and mineralization mechanism in the depression zone of Gejiu Laoka rock mass[J].Mineral Resources and Geology, 28(1): 88-92(in Chinese with English abstract).
Google Scholar
|
|
PALMER M R, LONDON D, VI G B M, et al., 1992.Experimental determination of fractionation of11B/10B between tourmaline and aqueous vapor: A temperature- and pressure-dependent isotopic system[J].Chemical Geology: Isotope Geoscience section, 101: 123-129.
Google Scholar
|
|
PALMER M R, SWIHART G H, 1996.Boron isotope geochemistry; an overview[J].Reviews in Mineralogy and Geochemistry, 33:709-744.
Google Scholar
|
|
PENG Qiang, JIANG Xiaojun, LI Chao, et al., 2021.The geochemical characteristics and geological significance of fluorite in the Gejiu Xi'ao altered granite type copper tin polymetallic deposit, Yunnan[J].Geology of Mineral Deposits, 40(6): 1182-1198(in Chinese with English abstract).
Google Scholar
|
|
PERUGINI D, POLI G, 2007.Tourmaline nodules from Capo Bianco aplite (Elba Island, Italy): an example of diffusion limited aggregation growth in a magmatic system[J].Contributions to Mineralogy and Petrology, 153: 493-508.
Google Scholar
|
|
ROZENDAAL A, BRUWER L, 1995.Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn (W) mineralization in the Cape Granite Suite, South Africa[J].Journal of African Earth Sciences, 21: 141-155.
Google Scholar
|
|
SAMSON I M, SINCLAIR W D, 1992.Magmatic hydrothermal fluids and the origin of quartz-tourmaline orbicules in the Seagull batholith, Yukon Territory[J].The Canadian Mineralogist, 30: 937-954.
Google Scholar
|
|
SCHMIDT C, THOMAS R, HEINRICH W, 2005.Boron speciation in aqueous fluids at 22 to 600 °C and 0.1 MPa to 2 GPa[J].Geochimica et Cosmochimica Acta, 69: 275-281.
Google Scholar
|
|
SLACK J F, 1996.Tourmaline associations with hydrothermal ore deposits[J].Reviews in Mineralogy, 33: 558-643.
Google Scholar
|
|
SLACK J F, TRUMBULL R B, 2011.Tourmaline as a Recorder of Ore-Forming Processes[J].Elements, 7: 321-326.
Google Scholar
|
|
Southwest Metallurgical Geological Exploration Company of the Ministry of Metallurgical Industry (Team 308), 1984.Geology of Gejiu Tin Mine[M].Beijing: Metallurgical Industry Press:236(in Chinese).
Google Scholar
|
|
SUN S S, MCDONOUGH W F, 1989.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//SAUNDERS A D, NORRY M J.Magmatism in the the ocean basins.London: Geological Society of London, Special Publication: 313-345.
Google Scholar
|
|
TRUMBULL R B, BEURLEN H, WIEDENBECK M, et al., 2013.The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil[J].Chemical Geology, 352: 47-62.
Google Scholar
|
|
TRUMBULL R, KRIENITZ M S, GOTTESMANN B, et al., 2008.Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia[J].Contributions to Mineralogy and Petrology, 155: 1-18.
Google Scholar
|
|
VAN HINSBERG V J, HENRY D J, DUTROW B L, 2011a.Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past[J].Elements, 7: 327-332.
Google Scholar
|
|
VAN HINSBERG V J, HENRY D J, MARSCHALL H R, 2011b.Tourmaline: an ideal indicator of its host environment[J].The Canadian Mineralogist, 49: 1-16.
Google Scholar
|
|
WANG Denghong, CHEN Yuchuan, 1996.Preliminary exploration of the composition and genesis of Guangxi Dachang tourmaline[J].Journal of Rock Mineralogy, (3): 89-97(in Chinese with English abstract).
Google Scholar
|
|
WANG Qiang, LI Jianwei, JIAN Ping, et al., 2005.Alkaline syenites in eastern Cathaysia (South China): link to Permian–Triassic transtension[J].Earth and Planetary Science Letters, 230: 339-354.
Google Scholar
|
|
XU Rong, ROMER R L, GLODNY J, 2021.External fluids cause alteration and metal redistribution in the granite-hosted Tangziwa Sn-Cu deposit, Gejiu district, China[J].Lithos, 382-383:105937.
Google Scholar
|
|
YANG Shuiyuan, JIANG Shaoyong, ZHAO Kuidong, et al., 2015.Tourmaline as a recorder of magmatic–hydrothermal evolution: an in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China[J].Contributions to Mineralogy and Petrology, 170(5-6): 1-21.
Google Scholar
|
|
ZHAO Hedong, ZHAO Kuidong, PALMER M R, et al., 2019.In-situ elemental and boron isotopic variations of tourmaline from the Sanfang granite, South China: Insights into magmatic- hydrothermal evolution[J].Chemical Geology, 504:190-204.
Google Scholar
|
|
ZHAO Hedong, ZHAO Kuidong, PALMER M R, et al., 2021.Magmatic-Hydrothermal Mineralization Processes at the Yidong Tin Deposit, South China: Insights from In Situ Chemical and Boron Isotope Changes of Tourmaline[J].Economic Geology and the Bulletin of the Society of Economic Geologists, (7): 116.
Google Scholar
|
|
ZHAO Jiangnan, CHEN Shouyu, ZUO Renguang, 2017.Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models[J].Geochemistry: Exploration, Environment, Analysis, 17:239-251.
Google Scholar
|
|
ZHAO Kuidong, ZHANG Linghuo, PALMER M R, et al., 2021.Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China:Constraints on the origin and evolution of hydrothermal fluids[J].Mineralium Deposita, 56: 1589-1608.
Google Scholar
|