2024 Vol. 45, No. 4
Article Contents

REN Hongyu, LI Chao, JIANG Xiaojun, YANG Fucheng, HAN Zhang, LU Lei, CHEN Yaokun. 2024. Geochemical Composition and Boron Isotope Characteristics of Tourmalines in the Gejiu Tin Polymetallic Mining Area, Yunnan Province:Constraints on the Properties and Evolution of Ore-forming Fluids. Acta Geoscientica Sinica, 45(4): 575-590. doi: 10.3975/cagsb.2024.032001
Citation: REN Hongyu, LI Chao, JIANG Xiaojun, YANG Fucheng, HAN Zhang, LU Lei, CHEN Yaokun. 2024. Geochemical Composition and Boron Isotope Characteristics of Tourmalines in the Gejiu Tin Polymetallic Mining Area, Yunnan Province:Constraints on the Properties and Evolution of Ore-forming Fluids. Acta Geoscientica Sinica, 45(4): 575-590. doi: 10.3975/cagsb.2024.032001

Geochemical Composition and Boron Isotope Characteristics of Tourmalines in the Gejiu Tin Polymetallic Mining Area, Yunnan Province:Constraints on the Properties and Evolution of Ore-forming Fluids

More Information
  • Corresponding author: JIANG Xiaojun  
  • The Gejiu tin deposit is a world-class Sn-Cu polymetallic deposit related to highly differentiated granite in the Late Cretaceous.Its mineral origin and fluid evolution process have always been the focus of research.Tourmaline is widely developed in carbonate rock, granite, and skarn in the Gejiu area; however, the relationship between tourmaline and mineralization is unclear.In this study, systematic petrographic observation and electron Microanalysis (EPMA), and LA-ICP-MS analysis of trace elements and boron isotopes from different types of tourmaline were carried out.The results show that all tourmalines belong to basic tourmaline; TurI, TurⅡ, and TurⅣ are of hydrothermal origin, whereas TurⅢ is of magmatic origin.Compared with hydrothermal tourmaline, magmatic tourmaline has lower Mg, Ca, and other elements and the high Sr content of TurI tourmaline indicates that it was contaminated by the surrounding rock.The variation in trace elements in the tourmaline reveals that Sn was gradually enriched in the magma and precipitated in the porphyritic granite and contact skarn, with an increasing degree of magmatic differentiation from porphyritic granite to equite-grained granite.The different types of tourmalines had uniform δ11B values (-15.2‰ – -12.8‰), which are consistent with the composition range of granite, indicating that the ore-forming materials were derived from granitic magma.
  • 加载中
  • 陈守余, 赵鹏大, 童祥, 等.2011.个旧东区蚀变花岗岩型锡铜多金属矿床成矿特征及找矿意义[J].地球科学(中国地质大学学报), 36(2): 277-281.

    Google Scholar

    贾润幸, 方维萱, 隗雪燕, 2014.云南个旧锡矿花岗岩地球化学特征及构造环境研究[J].矿产勘查, 5(2): 257-266.

    Google Scholar

    廖时理, 陈守余, 姚涛, 等, 2014.个旧西凹铜-锡多金属矿床地球化学特征及地质意义[J].大地构造与成矿学, 38(3):635-646.

    Google Scholar

    马振飞, 陈图宏, 2001.云南个旧塘子凹锡多金属矿床地质特征[J].矿物学报, (4): 578-584.

    Google Scholar

    毛景文, 程彦博, 郭春丽, 等, 2008.云南个旧锡矿田: 矿床模型及若干问题讨论[J].地质学报, 82(11): 1455-1467.

    Google Scholar

    欧阳恒, 彭省临, 谷湘平, 等, 2014.个旧老卡岩体凹陷带岩矿特征与成矿机理分析[J].矿产与地质, 28(1): 88-92.

    Google Scholar

    彭强, 江小均, 李超, 等, 2021.云南个旧西凹蚀变花岗岩型铜-锡多金属矿床萤石地球化学特征及其地质意义[J].矿床地质, 40(6): 1182-1198.

    Google Scholar

    王登红, 陈毓川, 1996.广西大厂电气石的成分与成因初探[J].岩石矿物学杂志, (3): 89-97.

    Google Scholar

    冶金工业部西南冶金地质勘探公司(308 地质队), 1984.个旧锡矿地质[M].北京: 冶金工业出版社: 236.

    Google Scholar

    BAKSHEEV I A, TRUMBULL R B, POPOV M P, et al., 2018.Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia[J].Mineralium Deposita, 53(7): 1-19.

    Google Scholar

    BALEN D, BROSKA I, 2011.Tourmaline nodules: products of devolatilization within the final evolutionary stage of granitic melt? Geological Society, London[J].Special Publications, 350: 53-68.

    Google Scholar

    CHEN Shouyu, ZHAO Pengda, TONG Xiang, et al., 2011.Metallogenic characteristics and prospecting significance of altered granite type tin copper polymetallic deposits in the eastern Gejiu area[J].Journal of Earth Science (China University of Geosciences), 36(2): 277-281(in Chinese with English abstract).

    Google Scholar

    CHENG Yanbo, MAO Jingwen, CHANG Zhaoshan, et al., 2013b.The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar-39Ar geochronology[J].Ore Geology Reviews, 53: 50-62.

    Google Scholar

    CHENG Y, MAO J, RUSK B, et al., 2012.Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China[J].Ore Geology Reviews, 48: 180-196.

    Google Scholar

    CHENG Yanbo, MAO Jingwen, SPANDLER C, 2013a.Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China[J].Lithos, 175-176: 213-229.

    Google Scholar

    CHENG Yanbo, MAO Jingwen, ZHU Xiangkun, et al., 2015.Iron isotope fractionation during supergene weathering process and its application to constrain ore genesis in Gaosong deposit, Gejiu district, SW China[J].Gondwana Research, 27:1283-1291.

    Google Scholar

    CODEO M S, WEIS P, TRUMBULL R B, et al., 2017.Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit Portugal[J].Chemical Geology, 468: 1-16.

    Google Scholar

    CODEO M S, WEIS P, TRUMBULL R B, et al., 2021.The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu Deposit, Portugal[J].Mineralium Deposita, 56: 481-508.

    Google Scholar

    DUCHOSLAV M, MARKS M A, DROST K, et al., 2017.Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: The Cornubian Batholith, SW England[J].Ore Geology Reviews, 83: 215-234.

    Google Scholar

    GUO Jia, XIANG Lu, ZHANG Rongqing, et al., 2022.Chemical and boron isotopic variations of tourmaline deciphering magmatic-hydrothermal evolution at the Gejiu Sn-polymetallic district, South China[J].Chemical Geology, 593: 120698.

    Google Scholar

    GUO Jia, ZHANG Rongqing, SUN Weidong, et al., 2018.Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U-Pb ages and trace element compositions[J].Ore Geology Reviews, 95: 863-879.

    Google Scholar

    HARLAUX M, KOUZMANOV K, GIALLI S, et al., 2020.Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: the world-class San Rafael tin (-copper) deposit, Peru[J].Economic Geology, 115: 1665-1697.

    Google Scholar

    HARLAUX M, MERCADIER J, MARIGNAC C, et al., 2019.Origin of the atypical Puy-les-Vignes W breccia pipe (Massif Central, France) constrained by trace element and boron isotopic composition of tourmaline[J].Ore Geology Reviews, 114: 103132.

    Google Scholar

    HENRY D J, DUTROW B L, 1996.Metamorphic tourmaline and its petrologic applications[J].Reviews in Mineralogy and Geochemistry, 33: 503-558.

    Google Scholar

    HENRY D J, GUIDOTTI C V, 1985.Tourmaline as a petrogenetic indicator mineral-An example from the staurolite-grade metapelites of NW Maine[J].American Mineralogist, 70(1): 1-15.

    Google Scholar

    HENRY D J, NOVAK M, HAWTHORNE F C, et al., 2011.Nomenclature of the tourmaline-supergroup minerals[J].American Mineralogist, 96(1): 895-913.

    Google Scholar

    HERVIG R L, MOORE G M, WILLIAMS L B, et al., 2002.Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt[J].American Mineralogist, 87:769-774.

    Google Scholar

    HONG W, COOKE D R, ZHANG L, et al., 2017.Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: Characteristics, origins, and implications for tin mineralization[J].American Mineralogist, 102: 876-899.

    Google Scholar

    HOU Kejun, LI Yanhe, XIAO Yingkai, et al., 2010.In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS[J].Chinese Science Bulletin, 55: 3305-3311.

    Google Scholar

    HU Dalong, JIANG Shaoyong, 2020.In-situ elemental and boron isotopic variations of tourmaline from the Maogongdong deposit in the Dahutang W-Cu ore field of northern Jiangxi Province, South China: Insights into magmatic-hydrothermal evolution[J].Ore Geology Reviews, 122: 103502.

    Google Scholar

    JIA Runxing, FANG Weixuan, Hu Ruizhong, 2010.Mineral Geochemical Compositions of Tourmalines and Their Significance in the Gejiu Tin Polymetallic Deposits, Yunnan, China[J].Acta Geologica Sinica (English Edition), 84(1): 155-166.

    Google Scholar

    JIA Runxing, FANG Weixuan, WEI Xueyan, 2014 Geochemical characteristics and tectonic environment of granite in Gejiu tin deposit, Yunnan[J].Mineral exploration, 5(2): 257-266(in Chinese with English abstract).

    Google Scholar

    JIANG Shaoyong, RADVANEC M, NAKAMURA E, et al., 2008.Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution[J].Lithos, 106: 1-11.

    Google Scholar

    KALIWODA M, MARSCHALL H R, MARKS M A, et al., 2011.Boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes[J].Lithos, 125: 51-64.

    Google Scholar

    KOWALSKI P M, WUNDER B, JAHN S, 2013.Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T[J].Geochimica et Cosmochimica Acta, 101: 285-301.

    Google Scholar

    LIAO Shili, CHEN Shouyu, DENG Xiaohu, et al., 2014.Fluid inclusion characteristics and geological significance of the Xi’ao copper–tin polymetallic deposit in Gejiu, Yunnan Province[J].Journal of Asian Earth Sciences, 79: 455-467.

    Google Scholar

    LIAO Shili, CHEN Shouyu, YAO Tao, et al., 2014.Geochemical characteristics and geological significance of the Gejiu Xi’ao copper tin polymetallic deposit[J].Tectonics and Metallogeny, 38: 635-646(in Chinese with English abstract).

    Google Scholar

    LIU Tao, JIANG Shaoyong, 2021.Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid[J].American Mineralogist: Journal of Earth and Planetary Materials, 106: 994-1008.

    Google Scholar

    LIU Tao, JIANG Shaoyong, SU Huimin, et al., 2023.Tourmaline as a tracer of magmatic-hydrothermal evolution and potential Nb-Ta-(W-Sn) mineralization from the Lingshan granite batholith, Jiangxi province, southeast China[J].Lithos, 438-439:107016.

    Google Scholar

    LIU Yongsheng, HU Zhaochu, ZONG Keqing, et al., 2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 55: 1535-1546.

    Google Scholar

    LONDON D, HERVIG R L, MORGAN G B, 1988.Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa[J].Contributions to Mineralogy & Petrology, 99: 360-373.

    Google Scholar

    LONDON D, MANNING D A C, 1995.Chemical variation and significance of tourmaline from Southwest England[J].Economic Geology, 90: 495-519.

    Google Scholar

    MA Zhenfei, CHEN Tuhong, 2001 Geological characteristics of the Gejiutangzi'ao tin polymetallic deposit in Yunnan[J].Journal of Mineralogy, (4): 578-584(in Chinese with English abstract).

    Google Scholar

    MAO Jingwen, CHENG Yanbo, GUO Chunli, et al., 2008 Yunnan Gejiu Tin Mine Field: Deposit Model and Discussion of Several Issues[J].Journal of Geology, 82(11): 1455-1467(in Chinese with English abstract).

    Google Scholar

    MARSCHALL H R, JIANG S Y, 2011.Tourmaline isotopes: no element left behind[J].Elements, 7: 313-319.

    Google Scholar

    MEYER C, WUNDER B, MEIXNER A, et al., 2008.Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation[J].Contributions to Mineralogy& Petrology, 156: 259-267.

    Google Scholar

    OUYANG Heng, PENG Shenglin, GU Xiangping, et al., 2014 Analysis of rock and mineral characteristics and mineralization mechanism in the depression zone of Gejiu Laoka rock mass[J].Mineral Resources and Geology, 28(1): 88-92(in Chinese with English abstract).

    Google Scholar

    PALMER M R, LONDON D, VI G B M, et al., 1992.Experimental determination of fractionation of11B/10B between tourmaline and aqueous vapor: A temperature- and pressure-dependent isotopic system[J].Chemical Geology: Isotope Geoscience section, 101: 123-129.

    Google Scholar

    PALMER M R, SWIHART G H, 1996.Boron isotope geochemistry; an overview[J].Reviews in Mineralogy and Geochemistry, 33:709-744.

    Google Scholar

    PENG Qiang, JIANG Xiaojun, LI Chao, et al., 2021.The geochemical characteristics and geological significance of fluorite in the Gejiu Xi'ao altered granite type copper tin polymetallic deposit, Yunnan[J].Geology of Mineral Deposits, 40(6): 1182-1198(in Chinese with English abstract).

    Google Scholar

    PERUGINI D, POLI G, 2007.Tourmaline nodules from Capo Bianco aplite (Elba Island, Italy): an example of diffusion limited aggregation growth in a magmatic system[J].Contributions to Mineralogy and Petrology, 153: 493-508.

    Google Scholar

    ROZENDAAL A, BRUWER L, 1995.Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn (W) mineralization in the Cape Granite Suite, South Africa[J].Journal of African Earth Sciences, 21: 141-155.

    Google Scholar

    SAMSON I M, SINCLAIR W D, 1992.Magmatic hydrothermal fluids and the origin of quartz-tourmaline orbicules in the Seagull batholith, Yukon Territory[J].The Canadian Mineralogist, 30: 937-954.

    Google Scholar

    SCHMIDT C, THOMAS R, HEINRICH W, 2005.Boron speciation in aqueous fluids at 22 to 600 °C and 0.1 MPa to 2 GPa[J].Geochimica et Cosmochimica Acta, 69: 275-281.

    Google Scholar

    SLACK J F, 1996.Tourmaline associations with hydrothermal ore deposits[J].Reviews in Mineralogy, 33: 558-643.

    Google Scholar

    SLACK J F, TRUMBULL R B, 2011.Tourmaline as a Recorder of Ore-Forming Processes[J].Elements, 7: 321-326.

    Google Scholar

    Southwest Metallurgical Geological Exploration Company of the Ministry of Metallurgical Industry (Team 308), 1984.Geology of Gejiu Tin Mine[M].Beijing: Metallurgical Industry Press:236(in Chinese).

    Google Scholar

    SUN S S, MCDONOUGH W F, 1989.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//SAUNDERS A D, NORRY M J.Magmatism in the the ocean basins.London: Geological Society of London, Special Publication: 313-345.

    Google Scholar

    TRUMBULL R B, BEURLEN H, WIEDENBECK M, et al., 2013.The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil[J].Chemical Geology, 352: 47-62.

    Google Scholar

    TRUMBULL R, KRIENITZ M S, GOTTESMANN B, et al., 2008.Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia[J].Contributions to Mineralogy and Petrology, 155: 1-18.

    Google Scholar

    VAN HINSBERG V J, HENRY D J, DUTROW B L, 2011a.Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past[J].Elements, 7: 327-332.

    Google Scholar

    VAN HINSBERG V J, HENRY D J, MARSCHALL H R, 2011b.Tourmaline: an ideal indicator of its host environment[J].The Canadian Mineralogist, 49: 1-16.

    Google Scholar

    WANG Denghong, CHEN Yuchuan, 1996.Preliminary exploration of the composition and genesis of Guangxi Dachang tourmaline[J].Journal of Rock Mineralogy, (3): 89-97(in Chinese with English abstract).

    Google Scholar

    WANG Qiang, LI Jianwei, JIAN Ping, et al., 2005.Alkaline syenites in eastern Cathaysia (South China): link to Permian–Triassic transtension[J].Earth and Planetary Science Letters, 230: 339-354.

    Google Scholar

    XU Rong, ROMER R L, GLODNY J, 2021.External fluids cause alteration and metal redistribution in the granite-hosted Tangziwa Sn-Cu deposit, Gejiu district, China[J].Lithos, 382-383:105937.

    Google Scholar

    YANG Shuiyuan, JIANG Shaoyong, ZHAO Kuidong, et al., 2015.Tourmaline as a recorder of magmatic–hydrothermal evolution: an in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China[J].Contributions to Mineralogy and Petrology, 170(5-6): 1-21.

    Google Scholar

    ZHAO Hedong, ZHAO Kuidong, PALMER M R, et al., 2019.In-situ elemental and boron isotopic variations of tourmaline from the Sanfang granite, South China: Insights into magmatic- hydrothermal evolution[J].Chemical Geology, 504:190-204.

    Google Scholar

    ZHAO Hedong, ZHAO Kuidong, PALMER M R, et al., 2021.Magmatic-Hydrothermal Mineralization Processes at the Yidong Tin Deposit, South China: Insights from In Situ Chemical and Boron Isotope Changes of Tourmaline[J].Economic Geology and the Bulletin of the Society of Economic Geologists, (7): 116.

    Google Scholar

    ZHAO Jiangnan, CHEN Shouyu, ZUO Renguang, 2017.Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models[J].Geochemistry: Exploration, Environment, Analysis, 17:239-251.

    Google Scholar

    ZHAO Kuidong, ZHANG Linghuo, PALMER M R, et al., 2021.Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China:Constraints on the origin and evolution of hydrothermal fluids[J].Mineralium Deposita, 56: 1589-1608.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(74) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint