2021 No. 5
Article Contents

ZHAO Jia-yi, ZHEN Shi-jun, ZHANG Cui-yun, YIN Mi-ying, ZHANG Sheng. 2021. Composition and Functional Prediction of Microbial Communities in Deep Geothermal Water from Jizhong (Central Hebei) Geothermal Area. Acta Geoscientica Sinica, (5): 605-616. doi: 10.3975/cagsb.2021.042601
Citation: ZHAO Jia-yi, ZHEN Shi-jun, ZHANG Cui-yun, YIN Mi-ying, ZHANG Sheng. 2021. Composition and Functional Prediction of Microbial Communities in Deep Geothermal Water from Jizhong (Central Hebei) Geothermal Area. Acta Geoscientica Sinica, (5): 605-616. doi: 10.3975/cagsb.2021.042601

Composition and Functional Prediction of Microbial Communities in Deep Geothermal Water from Jizhong (Central Hebei) Geothermal Area

More Information
  • Corresponding author: ZHANG Cui-yun  
  • The understanding of the composition and functions of deep microbial communities is of great significance for exploring the origin of early lives and utilizing their unique functions.The composition and functions of microbial communities in deep carbonate karst-fissure geothermal storage environment remain unclear.In order to explore the composition and prediction of the functions of microbial communities in the deep geothermal water from the deep carbonate rock karst-fissure geothermal storage environment, the authors, taking shallow water and soil as the references, collected deep geothermal water samples by the pumping tests using the geothermal scientific drilling holes located in Jizhong geothermal area and also collected shallow water samples from farm irrigation wells and soil samples near the top of each drill hole, respectively for 16S rRNA gene high-throughput sequencing and functional predictions using PICRUSt.The results show that there exist 38 phyla and 541 genera in the deep geothermal water of Jizhong geothermal area, of which bacteria are dominant (97.5%), whereas archaea are rare (2.5%), and characteristic microbial communities comprise mainly Firmicutes, Nitrospirae, Thermotogae and Euryarchaeota.The dominant bacterial genera include sulfate-reducing bacteria.Carbon fixation, fermentation and sulfate reduction might be relatively strong, whereas methanogenesis and denitrification might be weak in the deep geothermal water.Aerobic, mesophilic bacteria occurring in the deep geothermal water indicate that the deep geothermal water is recharged by the shallow water rich in proteobacteria under the condition of large flow pumping.This study has revealed that the deep carbonate rock karst-fracture geothermal reservoirs contain abundant microbial communities with various functions in Jizhong geothermal area, and that the characteristics of microbial communities can be used as indicators of the hydraulic connection between deep geothermal water and shallow water.
  • 加载中
  • 董海良, 于炳松, 吕国.2009.地质微生物学中几项最新研究进展[J].地质论评, 55(4): 98-126.

    Google Scholar

    王贵玲, 李郡, 吴爱民, 张薇, 胡秋韵.2018.河北容城凸起区热储层新层系-高于庄组热储特征研究[J].地球学报, 39(5): 24-32.

    Google Scholar

    赵佳怡, 甄世军, 张翠云, 殷密英, 张胜, 何泽, 宁卓.2020.深部热水硫酸盐还原菌微滴数字 PCR检测技术的建立与应用[J].微生物学通报, 47(11): 3756-3767.

    Google Scholar

    APPRILL A, MCNALLY S, PARSONS R, WEBER L.2015.Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton[J].Aquatic Microbial Ecology, 75(2): 129-137.

    Google Scholar

    BERG I A.2011.Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J].Applied and Environmental Microbiology, 77: 1925-1936.

    Google Scholar

    BOMBERG M, LAMMINMÄKI T, ITÄVAARA M.2016.Microbial communities and their predicted metabolic characteristics in deep fracture groundwaters of the crystalline bedrock at Olkiluoto, Finland[J].Biogeosciences, 13(21): 6031-6047.

    Google Scholar

    CHAPELLE F H, O’NEILL K, BRADLEY P M, METHE B A, CIUFO S A, KNOBEL L L, LOVLEY D R.2002.A hydrogen-based subsurface microbial community dominated by methanogens[J].Nature, 415:312-315.

    Google Scholar

    CHENG Lei, DAI Li-rong, LI Xia, ZHANG Hui, LU Ya-hai.2011.Isolation and characterization of Methanothermobacter crinale sp.nov., a novel hydrogenotrophic methanogen from the Shengli oil field[J].Applied and Environmental Microbiology, 77: 5212-5219.

    Google Scholar

    CHIRIAC C M, BARICZ A, SZEKERES E, RUDI K, DRAGO N, COMAN C.2018.Microbial Composition and Diversity Patterns in Deep Hyperthermal Aquifers from the Western Plain of Romania[J].Microbial Ecology, 75: 38-51.

    Google Scholar

    CHIVIAN D, BRODIE E L, ALM E J, CULLEY D, DEHAL P S, DESANTIS T Z, GIHRING T M, LAPIDUS A, LIN Li-hung, LOWRY S R, MOSER D P, RICHARDSON P M, SOUTHAM G, WANGER G, PRATT L M, ANDERSEN G L, HAZEN T C, BROCKMAN F J, ARKIN A P, ONSTOTT T C.2008.Environmental genomics reveals a single-speciese cosystem deep within Earth[J].Science, 322: 275-278.

    Google Scholar

    COLMAN D R, POUDEL S, STAMPS B W, BOYD E S, SPEAR J R.2017.The deep hot biosphere: Twenty-five years of retrospection[J].Proceedings of the National Academy of Sciences, 114: 6895-6903.

    Google Scholar

    DAVIDSON M M, SILVER B J, ONSTOTT T C, MOSER D P, GIHRING T M, PRATT L M, BOICE E A, LOLLAR B S, PIPKE J L, PFIFFNER S M, KIEFT T L, SEYMORE W, RALSTON C.2011.Capture of Planktonic Microbial Diversity in Fractures by Long-Term Monitoring of Flowing Boreholes, Evander Basin, South Africa[J].Geomicrobiology Journal, 28(4): 275-300.

    Google Scholar

    DONG Hai-liang, YU Bing-song, LÜ Guo.2009.Recent Developments in Geomicrobiology[J].Geological Review, 55(4):98-126(in Chinese with English abstract).

    Google Scholar

    DUTTA A, DUTTA GUPTA S, GUPTA A, SARKAR J, ROY S, MUKHERJEE A, SAR P.2018.Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India[J].Scientific Reports, 8(1): 17459.

    Google Scholar

    ESCUDERO C, OGGERIN M, AMILS R.2018.The deep continental subsurface: the dark biosphere[J].International Microbiology, 21: 3-14.

    Google Scholar

    HALLBECK L, PEDERSEN K.2008.Characterization of microbial processes in deep aquifers of the Fennoscandian Shield[J].Applied Geochemistry, 23(7): 1796-1819.

    Google Scholar

    HENRY E A, DEVEREUX R, MAKI J S, GILMOUR C C, WOESE C R, MANDELCO L, SCHAUDER R, REMSEN C C, MITCHELL R.1994.Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen.nov.and sp.nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain[J].Archives of Microbiology, 161(1): 62-69.

    Google Scholar

    HUBALEK V, WU Xiao-feng, EILER A, BUCK M, HEIM C, DOPSON M, BERTILSSON S, IONESCU D.2016.Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield[J].The ISME Journal, 10: 2447-2458.

    Google Scholar

    HUBER R, LANGWORTHY T A, KÖNIG H, THOMM M, WOESE C R, SLEYTR U B, STETTER K O.1986.Thermotoga maritima sp.nov.represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C[J].Archives of Microbiology, 144: 324-333.

    Google Scholar

    ITÄVAARA M, NYYSSÖNEN M, KAPANEN A, NOUSIAINEN A, AHONEN L, KUKKONEN I.2011.Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield[J].Fems Microbiology Ecology, 77(2): 295-309.

    Google Scholar

    KAKSONEN A H, SPRING S, SCHUMANN P, KROPPENSTEDT R M, PUHAKKA J A.2007.Desulfovirgula thermocuniculi gen.nov., sp.nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan[J].International Journal of Systematic and Evolutionary Microbiology, 57: 98-102.

    Google Scholar

    LANGILLE M G I, ZANEVELD J, CAPORASO J G, MCDONALD D, KNIGHTS D, REYES J A, CLEMENTE J C, BURKEPILE D E, THURBE R L V, KNIGH R, BEIKO, R G, HUTTENHOWER C.2013.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J].Nature Biotechnology, 81(9): 814-821.

    Google Scholar

    LAU M C, CAMERON C, MAGNABOSCO C, BROWN C T, SCHILKEY F, GRIM S, HENDRICKSON S, PULLIN M, LOLLAR B S, HEERDEN E V, KIEFT T L, ONSTOTT T C.2014.Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships[J].Frontiers in Microbiology, 5: 1-16.

    Google Scholar

    MORI K, SUZUKI K.2008.Thiofaba tepidiphila gen.nov., sp.nov., a novel obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the Gammaproteobacteria isolated from a hot spring[J].International Journal of Systematic and Evolutionary Microbiology, 58: 1885-1891.

    Google Scholar

    NAKAMURA K, TAKAHASHI A, MORI C, TAMAKI H, MOCHIMARU H, NAKAMURA K, TAKAMIZAWA K, KAMAGATA Y.2013.Methanothermobacter tenebrarum sp.nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field[J].International Journal of Systematic and Evolutionary Microbiology, 63: 715-722.

    Google Scholar

    NYYSSÖNEN M, HULTMAN J, AHONEN L, KUKKONEN I, PAULIN L, LAINE P, ITÄVAARA M, AUVINEN P.2014.Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield[J].The ISME Journal, 8(1): 126-138.

    Google Scholar

    PARADA A E, NEEDHAM D M, FUHRMAN J A.2016.Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples[J].Environmental Microbiology, 18(5):1403-1414

    Google Scholar

    QIN W, HEAL K R, RAMDASI R, KOBELT J N, MARTENS-HABBENA W, BERTAGNOLLI A D, AMIN S A, WALKER C B, URAKAWA H, KONNEKE M, DEVOL A H, MOFFETT J W, ARMBRUST E V, JENSEN G J, INGALLS A E, STAHL D A.2017.Nitrosopumilus maritimus gen.nov., sp.nov., Nitrosopumilus cobalaminigenes sp.nov., Nitrosopumilus oxyclinae sp.nov., and Nitrosopumilus ureiphilus sp.nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota[J].International Journal of Systematic and Evolutionary Microbiology, 67: 5067-5079.

    Google Scholar

    TAKAI K, KOBAYASHI H, NEALSON KH, HORIKOSHI K.2003.Sulfurihydrogenibium subterraneum gen.nov., sp.nov., from a subsurface hot aquifer[J].International Journal of Systematic and Evolutionary Microbiology, 53: 823-827

    Google Scholar

    WANG Gui-ling, LI Jun, WU Ai-min, ZHANG Wei, HU Qiu-yun.2018.A Study of the Thermal Storage Characteristics of Gaoyuzhuang Formation, A New Layer System of Thermal Reservoir in Rongcheng Uplift Area, Hebei Province[J].Acta Geoscientica Sinica, 39(5): 24-32(in Chinese with English abstract).

    Google Scholar

    WIEGEL J, LJUNGDAHL L G.1981.Thermoanaerobacter ethanolicus gen.nov.spec.nov.a new, extreme thermophilic, anaerobic bacterium[J].Archives of Microbiology, 128(4):343-348.

    Google Scholar

    ZHAO Jia-yi, ZHEN Shi-jun, ZHANG Cui-yun, YIN Mi-ying, ZHANG Sheng, HE Ze, NING Zhuo.2020.Development and application of a droplet digital PCR technique for detection of sulfate-reducing bacteria in deep geothermal water[J].Microbiology China, 47(11): 3756-3767(in Chinese with English abstract).

    Google Scholar

    ZEIKUS J G, HEGGE P W, ANDERSON M A.1979.Thermoanaerobium brockii gen.nov.and sp.nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium[J].Archives of Microbiology, 122: 41-48.

    Google Scholar

    ZEIKUS J G, DAWSON M A, THOMPSON T E, INGVORSEN K, HATCHIKIAN E C.1983.Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen.nov.and sp.nov.[J].Journal of General Microbiology, 129: 1159-1169.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(74) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint