Citation: | MA Min, WANG Jiang-Li, CHEN Qi, LI Jing-Fu. 2024. Regional Landslide Susceptibility Evaluation Based on Random Forest Weighting Information: a Case Study of Zigui to Badong Section in the Three Gorges Reservoir Area. South China Geology, 40(4): 749-763. doi: 10.3969/j.issn.2097-0013.2024.04.013 |
In the study of landslide susceptibility assessment, conventional information models usually simply accumulate the information of different evaluation indicators, without paying attention to the weight differences between each evaluation indicator, resulting in inaccurate susceptibility zoning results. This article takes the Zigui to Badong section of the Three Gorges Reservoir area as an example and proposes a landslide hazard susceptibility evaluation method based on random forest weighting information to improve evaluation accuracy. This method first uses factor feature analysis to determine landslide evaluation factors, and then uses a random forest model to determine the weights of each evaluation factor. Then, the weights are fused with an information model, and a more accurate susceptibility evaluation result is obtained by weighting and superimposing the information of the evaluation factors. Two models were analyzed and evaluated using statistical indicators and ROC curves. The results showed that the area under the ROC curve (AUC) of the traditional information model and the information model based on random forest weighting were 0.778 and 0.855, respectively, in the test set. The method of determining the weighted information of the random forest optimized the traditional information method, providing a new approach for landslide disaster risk assessment.
[1] | 常 宏.2022.三峡库区潜在顺层岩质滑坡识别的宏观判据[J]. 华南地质,38(2):265-272. doi: 10.3969/j.issn.2097-0013.2022.02.007 |
[2] | 陈丹璐,孙德亮,文海家,辜庆渝.2024.基于不同因子筛选方法的Light GBM-SHAP滑坡易发性研究[J]. 北京师范大学学报(自然科学版),60(1):148-158. |
[3] | 陈 涛,钟子颖,牛瑞卿,刘 桐,陈胜云.2020.利用深度信念网络进行滑坡易发性评价[J]. 武汉大学学报(信息科学版),45(11):1809-1817. |
[4] | 丁 丽,郭 凯,张郝哲.2023.基于不同评价单元的地质灾害易发性评价对比[J]. 云南师范大学学报(自然科学版),43(2):62-68. |
[5] | 杜 鹏,陈宁生,伍康林,李 志,张瀛玉龙.2024.基于随机森林模型的藏东南地区滑坡易发性评价及主控因素分析[J]. 成都理工大学学报(自然科学版),51(2):328-344. |
[6] | 宫凤强,李夕兵,左宇军,付玉华.2007.基于DDA方法的滑坡稳定性预测[J]. 吉首大学学报(自然科学版),28(1):73-76. |
[7] | 郭 飞,赖 鹏,黄发明,刘磊磊,王秀娟,何政宇.2024.基于知识图谱的滑坡易发性评价文献综述及研究进展[J]. 地球科学,49(5):1584-1606. |
[8] | 郭培虹. 2010. 基于遥感的岩土质岸坡空间分布研究——以三峡库区秭归—巴东段为例[D]. 中国地质大学(武汉)硕士学位论文. |
[9] | 何 清,李丽琳,林子安.2024.基于FEEMD-GRU-FC模型的滑坡位移预测[J]. 人民长江,55(7):108-114. |
[10] | 黄发明,曹中山,姚 池,姜清辉,陈佳武.2021.基于决策树和有效降雨强度的滑坡危险性预警[J]. 浙江大学学报(工学版),55(3):472-482. doi: 10.3785/j.issn.1008-973X.2021.03.007 |
[11] | 李景富. 2010. 区域滑坡空间预测的数据挖掘方法探索[D]. 中国地质大学(武汉)硕士学位论文. |
[12] | 李 璐,瞿 伟,张 勤,李久元,王宇豪,刘祥斌.2022.优化循环神经网络在滑坡位移预测中的应用[J]. 大地测量与地球动力学,42(6):594-600. |
[13] | 李 明,蒋委君,董佳慧,金少锋,张宸伟,牛瑞卿.2023.基于机器学习的滑坡灾害易发性评价——以三峡库区为例[J]. 华南地质,39(3):413-427. doi: 10.3969/j.issn.2097-0013.2023.03.002 |
[14] | 李泽芝,王新刚.2024.镇域尺度下秦巴山区堆积层滑坡易发性不同单元评价性能对比研究[J]. 西北地质,57(1):1-11. doi: 10.12401/j.nwg.2023159 |
[15] | 连志鹏,厉一宁,刘 磊,王宁涛.2022.基于ArcGIS的湖北省远安县地质灾害风险定量评价[J]. 华南地质,38(4):680-688. doi: 10.3969/j.issn.2097-0013.2022.04.010 |
[16] | 廖德武,郑 冰,杜艳松,张君恺,兰中孝,吴正超.2022.兴仁“6·10”彭家洞高速滑坡运动特征与形成机理[J]. 地质科技通报,41(6):66-76. |
[17] | 林 振,卢书强,梅 军.2024.基于信息量法的湖北省秭归县滑坡易发性评价[J]. 华南地质,40(1):152-161. doi: 10.3969/j.issn.2097-0013.2024.01.011 |
[18] | 刘春玲,祁生文,童立强,安国庆,李小慧.2010.喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究[J]. 工程地质学报,18(5):669-676. doi: 10.3969/j.issn.1004-9665.2010.05.010 |
[19] | 刘中楠,高银梅,黄勇炜,姜 河,颜智强,李 策.2022.湖南省新宁县斜坡地质灾害形成机理与成因模式[J]. 科技创新导报,19(30):21-27. |
[20] | 欧光照,吴益平,张秋霞.2016.基于因子分析法的白水河滑坡影响因素分析[J]. 人民黄河,38(2):99-102. doi: 10.3969/j.issn.1000-1379.2016.02.026 |
[21] | 彭建兵,王启耀,庄建琦,冷艳秋,范仲杰,王少凯.2020.黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报,26(5):714-730. |
[22] | 彭 亮,田 浩,白刚刚,霍宇翔.2021.基于优化组合预测模型的滑坡发展趋势评价[J]. 广西大学学报(自然科学版),46(5):1228-1235. |
[23] | 彭 令,徐素宁,梅军军,苏凤环.2017.地震滑坡高分辨率遥感影像识别[J]. 遥感学报,21(4):509-518. |
[24] | 钱紫玲. 2023. 基于统计模型的黄土地震滑坡危险性评价[D]. 中国地震局兰州地震研究所硕士学位论文. |
[25] | 尚 敏,廖 芬,马 锐,刘昱廷.2021.白家包滑坡变形与库水位、降雨相关性定量化分析研究[J]. 工程地质学报,29(3):742-750. |
[26] | 汪美华,赵 慧,倪天翔,余 洋,陈红旗.2023.近30年滑坡研究文献图谱可视化分析[J]. 中国地质灾害与防治学报,34(4):75-85. |
[27] | 王高峰,郭 宁,邓 兵,田运涛,叶振南,陈宗良,吕凤兰,高幼龙.2021.不同组合模型区域滑坡易发性及精度分析[J]. 西北地质,54(2):259-272. |
[28] | 吴兴贵,王宇栋,王蓝婷,丁梓逸.2024.加权信息量模型在云南澜沧县滑坡危险性评价中的应用[J]. 中国地质灾害与防治学报,35(3):119-128. |
[29] | 肖海平,万俊辉,陈兰兰,范永超,陈 磊.2024.加权信息量支持下融合InSAR形变特征的滑坡易发性评价[J]. 大地测量与地球动力学,44(7):718-724. |
[30] | 闫举生,谭建民,章 昱.2024.清江流域覃家田滑坡成因机制及稳定性分析[J]. 华南地质,40(1):162-170. doi: 10.3969/j.issn.2097-0013.2024.01.012 |
[31] | 杨正荣,喜文飞,史正涛,杨志全,肖 波.2023.复杂植被山区滑坡蠕变与植被覆盖度关系研究[J]. 测绘科学,48(1):157-165+175. |
[32] | 叶润青,李士垚,郭 飞,付小林,牛瑞卿.2020.基于RS和GIS的三峡库区滑坡易发程度与土地利用变化的关系研究[J]. 工程地质学报,29(3):724-733. |
[33] | 殷坤龙,朱良峰.2001.滑坡灾害空间区划及GIS应用研究[J]. 地学前缘,8(2):279-284. doi: 10.3321/j.issn:1005-2321.2001.02.010 |
[34] | 余淙蔚,柳 侃,殷 杰,余 斌.2022.一种适用于逻辑回归模型评价浅层滑坡易发性的网格尺度划分方法——以2019年福建省三明市群发浅层滑坡为例[J]. 山地学报,40(1):106-119. doi: 10.3969/j.issn.1008-2786.2022.1.sdxb202201009 |
[35] | 张 坤,彭 涛,方家虎,陈胜华,罗云洪.2020.钟山区马落箐滑坡地质灾害成灾机理分析[J]. 西部资源,(5):88-90. doi: 10.3969/j.issn.1672-562X.2020.05.031 |
[36] | 张婷婷,晏鄂川,胡显明,范彬彬.2012.基于因子分析法的滑坡变形分析[J]. 长江科学院院报,29(4):21-25. doi: 10.3969/j.issn.1001-5485.2012.04.005 |
[37] | 张泽方,钱志宽,魏 勇,朱 星,王林均.2023.考虑最优影响因素组合的滑坡易发性评价——以水城区为例[J]. 科学技术与工程,23(10):4091-4099. doi: 10.12404/j.issn.1671-1815.2023.23.10.04091 |
[38] | 张志兼,黄 勋,蔡雨微,傅镜羽,朱 悦,杨 锐,韩超群.2022.三峡库区武隆段滑坡灾害驱动因子演变格局与人类活动的影响[J]. 中国地质灾害与防治学报,33(3):39-50. |
[39] | 章 昱,王 磊,伏永朋,刘亚磊,黄 皓.2023.基于斜坡单元与信息量法的丹江口库区典型流域地质灾害易发性评价[J]. 华南地质,39(3):512-522. doi: 10.3969/j.issn.2097-0013.2023.03.010 |
[40] | 赵 萍,赵思逸,孙 雨,阮旭东,王 宁,张树衡.2024.基于斜坡单元和语义分割的皖南地区滑坡灾害易发性评估[J]. 地质科学,59(2):562-574. doi: 10.12017/dzkx.2024.039 |
[41] | 赵晓燕,谈树成,李永平.2021.基于斜坡单元与组合赋权法的东川区地质灾害危险性评价[J]. 云南大学学报(自然科学版),43(2):299-305. doi: 10.7540/j.ynu.20200141 |
[42] | 赵 旭,范豪举,许敬叔,杜修力.2024.降雨条件下植被根系对非饱和土浅层滑坡的加固作用[J]. 北京工业大学学报,50(9):1100-1110. doi: 10.11936/bjutxb2023030014 |
[43] | 周洪福,方 甜,夏晨皓,冉 涛,徐如阁,张景华.2023.工程扰动诱发川西杜米滑坡复活变形特征及机理分析[J]. 现代地质,37(4):1044-1053. |
[44] | Bennett N D, Croke B F W, Guariso G, Guillaume J H A, Hamilton S H, Jakeman A J, Marsili-Libelli S, Newham L T H, Norton J P, Perrin C, Pierce S A, Robson B, Seppelt R, Voinov A A, Fath B D, Andreassian V. 2013. Characterising performance of environmental models[J]. Environmental Modelling & Software, 40: 1-20. |
[45] | Dai F C, Lee C F, Ngai Y Y. 2002. Landslide risk assessment and management: an overview[J]. Engineering Geology, 64(1): 65-87. doi: 10.1016/S0013-7952(01)00093-X |
[46] | Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W Z. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning[J]. Engineering Geology, 102(3-4): 99-111. doi: 10.1016/j.enggeo.2008.03.014 |
[47] | Lin D Y, Foster D P, Ungar L H. 2011. VIF regression: A fast regression algorithm for large data[J]. Journal of the American Statistical Association, 106(493): 232-247. doi: 10.1198/jasa.2011.tm10113 |
[48] | Medina V, Hürlimann M, Guo Z Z, Lloret A, Vaunat J. 2021. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale[J]. Catena, 201: 105213. doi: 10.1016/j.catena.2021.105213 |
[49] | Merghadi A, Yunus A P, Dou J, Whiteley J, ThaiPham B, Bui D T, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance[J]. Earth-Science Reviews, 207: 103225. doi: 10.1016/j.earscirev.2020.103225 |
[50] | Pham B T, Bui D T, Prakash I, Dholakia M B. 2015. Landslide Susceptibility Assessment at a Part of Uttarakhand Himalaya, India using GIS-based statistical Approach of Frequency Ratio Method[J]. International Journal of Engineering Research and Technology, 4(11): 338-344. |
[51] | Reichenbach P, Rossi M, Malamud B D, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 180: 60-91. doi: 10.1016/j.earscirev.2018.03.001 |
[52] | Sreenivas K, Venkataratnam L. 2005. A Spatially Distributed Event-based Model to Predict Sediment Yield[J]. Journal of Spatial Hydrology, 5(1): 1-19. |
[53] | Tien B D, Tuan T A, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 13(2): 361-378. doi: 10.1007/s10346-015-0557-6 |
[54] | Tofani V, Bicocchi G, Rossi G, Segoni S, D’Ambrosio M, Casagli N, Catani F. 2017. Soil characterization for shallow landslides modeling: a case study in the Northern Apennines (Central Italy)[J]. Landslides, 14(2): 755-770. doi: 10.1007/s10346-017-0809-8 |
[55] | Yu L B, Zhou C, Wang Y, Cao Y, Peres D J. 2022. Coupling Data- and Knowledge-Driven Methods for Landslide Susceptibility Mapping in Human-Modified Environments: A Case Study from Wanzhou County, Three Gorges Reservoir Area, China[J]. Remote Sensing, 14(3): 774. doi: 10.3390/rs14030774 |
[56] | Zhu A X, Wang R X, Qiao J P, Qin C Z, Chen Y B, Liu J, Du F, Lin Y, Zhu T X. 2014. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic[J]. Geomorphology, 214: 128-138. doi: 10.1016/j.geomorph.2014.02.003 |
Geographical location and historical landslide distribution map of the research area
Technical flowchart for landslide susceptibility assessment in the research area
Grading Map of Landslide Evaluation Factors in the Zigui-Badong Section of the Three Gorges Reservoir Area
ROC curves of landslide training set (a) and test set (b) in the research area
Landslide susceptibility zoning map based on information model in the research area
Landslide susceptibility zoning map based on random forest weighting information model in the research area